PhD thesis

[1] Relativistic quantum cryptography
Centre for Quantum Technologies, National University of Singapore (2015)

Published articles

[2] Near-maximal two-photon entanglement for optical quantum communication at 2.1μm
A. C. Dada, J. Kaniewski, C. Gawith, M. Lavery, R. H. Hadfield, D. Faccio, M. Clerici
Physical Review Applied 16, L051005 (2021)
[arXiv:2106.10194] [DOI:10.1103/PhysRevApplied.16.L051005]

[3] Self-testing quantum systems of arbitrary local dimension with minimal number of measurements
S. Sarkar, D. Saha, J. Kaniewski, R. Augusiak
npj Quantum Information 7, 151 (2021)
[arXiv:1909.12722] [DOI:10.1038/s41534-021-00490-3]

[4] Mutually unbiased bases and symmetric informationally complete measurements in Bell experiments
A. Tavakoli, M. Farkas, D. Rosset, J.-D. Bancal, J. Kaniewski
Science Advances 7, eabc3847 (2021)
[arXiv:1912.03225] [DOI:10.1126/sciadv.abc3847]

[5] Maximal randomness from partially entangled states
E. Woodhead, J. Kaniewski, B. Bourdoncle, A. Salavrakos, J. Bowles, A. Acín, R. Augusiak
Physical Review Research 2, 042028(R) (2020)
[arXiv:1901.06912] [DOI:10.1103/PhysRevResearch.2.042028]

[6] Weak form of self-testing
J. Kaniewski
Physical Review Research 2, 033420 (2020)
[arXiv:1910.00706] [DOI:10.1103/PhysRevResearch.2.033420]

[7] Incompatibility robustness of quantum measurements: a unified framework
S. Designolle, M. Farkas, J. Kaniewski
New Journal of Physics 21, 113053 (2019)
[arXiv:1906.00448] [DOI:10.1088/1367-2630/ab5020]

[8] Maximal nonlocality from maximal entanglement and mutually unbiased bases, and self-testing of two-qutrit quantum systems
J. Kaniewski, I. Šupić, J. Tura, F. Baccari, A. Salavrakos, R. Augusiak
Quantum 3, 198 (2019)
[arXiv:1807.03332] [DOI:10.22331/q-2019-10-24-198]

[9] Robust self-testing of two-qubit states
T. Coopmans, J. Kaniewski, C. Schaffner
Physical Review A 99, 052123 (2019)
[arXiv:1902.00870] [DOI:10.1103/PhysRevA.99.052123]

[10] Self-testing mutually unbiased bases in the prepare-and-measure scenario
M. Farkas, J. Kaniewski
Physical Review A 99, 032316 (2019)
[arXiv:1803.00363] [DOI:10.1103/PhysRevA.99.032316]

[11] Self-testing entangled measurements in quantum networks
M. O. Renou, J. Kaniewski, N. Brunner
Physical Review Letters 121, 250507 (2018)
[arXiv:1807.04956] [DOI:10.1103/PhysRevLett.121.250507]

[12] Self-testing quantum states and measurements in the prepare-and-measure scenario
A. Tavakoli, J. Kaniewski, T. Vértesi, D. Rosset, N. Brunner
Physical Review A 98, 062307 (2018)
[arXiv:1801.08520] [DOI:10.1103/PhysRevA.98.062307]

[13] Device independence for two-party cryptography and position verification with memoryless devices
J. Ribeiro, T. Le Phuc, J. Kaniewski, J. Helsen and S. Wehner
Physical Review A 97, 062307 (2018)
[arXiv:1606.08750] [DOI:10.1103/PhysRevA.97.062307]

[14] Geometry of the set of quantum correlations
K. T. Goh, J. Kaniewski, E. Wolfe, T. Vértesi, X. Wu, Y. Cai, Y.-C. Liang, V. Scarani
Physical Review A 97, 022104 (2018)
[arXiv:1710.05892] [DOI:10.1103/PhysRevA.97.022104]

[15] Self-testing of binary observables based on commutation
J. Kaniewski
Physical Review A 95, 062323 (2017)
[arXiv:1702.06845] [DOI:10.1103/PhysRevA.95.062323]

[16] Quantum preparation uncertainty and lack of information
F. Rozpędek, J. Kaniewski, P. J. Coles and S. Wehner
New Journal of Physics 19, 023038 (2017)
[arXiv:1606.05565] [DOI:10.1088/1367-2630/aa5d64]

[17] A universal test for gravitational decoherence
C. Pfister, J. Kaniewski, M. Tomamichel, A. Mantri, R. Schmucker, N. McMahon, G. Milburn and S. Wehner
Nature Communications 7, 13022 (2016)
[arXiv:1503.00577] [DOI:10.1038/ncomms13022]

[18] Analytic and nearly optimal self-testing bounds for the Clauser-Horne-Shimony-Holt and Mermin inequalities
J. Kaniewski
Physical Review Letters 117, 070402 (2016)
[arXiv:1604.08176] [DOI:10.1103/PhysRevLett.117.070402]

[19] Device-independent two-party cryptography secure against sequential attacks
J. Kaniewski and S. Wehner
New Journal of Physics 18, 055004 (2016)
[arXiv:1601.06752] [DOI:10.1088/1367-2630/18/5/055004]

[20] Practical relativistic bit commitment
T. Lunghi, J. Kaniewski, F. Bussières, R. Houlmann, M. Tomamichel, S. Wehner and H. Zbinden
Physical Review Letters 115, 030502 (2015)
[arXiv:1411.4917] [DOI:10.1103/PhysRevLett.115.030502]

[21] Equivalence of wave-particle duality to entropic uncertainty
P. J. Coles, J. Kaniewski and S. Wehner
Nature Communications 5, 5814 (2014)
[arXiv:1403.4687] [DOI:10.1038/ncomms6814]

[22] Entropic uncertainty from effective anticommutators
J. Kaniewski, M. Tomamichel and S. Wehner
Physical Review A 90, 012332 (2014)
[arXiv:1402.5722] [DOI:10.1103/PhysRevA.90.012332]

[23] Experimental bit commitment based on quantum communication and special relativity
T. Lunghi, J. Kaniewski, F. Bussières, R. Houlmann, M. Tomamichel, A. Kent, N. Gisin, S. Wehner and H. Zbinden
Physical Review Letters 111, 180504 (2013)
[arXiv:1306.4801] [DOI:10.1103/PhysRevLett.111.180504]

[24] A monogamy-of-entanglement game with applications to device-independent quantum cryptography
M. Tomamichel, S. Fehr, J. Kaniewski and S. Wehner
New Journal of Physics 15, 103002 (2013)
[arXiv:1210.4359] [DOI:10.1088/1367-2630/15/10/103002]

[25] Secure bit commitment from relativistic constraints
J. Kaniewski, M. Tomamichel, E. Hänggi and S. Wehner
IEEE Transactions on Information Theory 59, 7 (2013)
[arXiv:1206.1740] [DOI:10.1109/TIT.2013.2247463]

[26] Acyclic versus cyclic π-electron delocalization. How is the substituent effect related to π-electron delocalization?
M. Dobrowolski, J. Kaniewski, T. Krygowski, M. Cyrański
Collection of Czechoslovak Chemical Communications 74, 115 (2009)

Refereed proceedings

[27] Query complexity in expectation
J. Kaniewski, T. Lee and R. de Wolf
Automata, Languages, and Programming
Lecture Notes in Computer Science 9134 (2015)
[arXiv:1411.7280] [DOI:10.1007/978-3-662-47672-7_62]

[28] One-sided device-independent QKD and position-based cryptography from monogamy games
M. Tomamichel, S. Fehr, J. Kaniewski and S. Wehner
Advances in Cryptology -- EUROCRYPT 2013
Lecture Notes in Computer Science 7881 (2013)
[arXiv:1210.4359] [DOI:10.1007/978-3-642-38348-9_36]


[29] Any pair of incompatible rank-one projective measurements is optimal for some non-trivial Bell inequality
G. Pereira Alves, J. Kaniewski

[30] Quantifying incompatibility of quantum measurements through non-commutativity
K. Mordasewicz, J. Kaniewski

Click here to see all my papers and preprints on the arXiv.