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Bell nonlocality

Bell scenario
x

a

y

b

P (a, b|x, y)

Assume that P ∈ Q is quantum

P (a, b|x, y) = 〈F xa ⊗G
y
b , ρAB〉.

Definition: P ∈ L is local if

P (a, b|x, y) =
∑
λ

p(λ) pA(a|x, λ) pB(b|y, λ).

Bell: L ( Q ⇐⇒ “ quantum mechanics is (Bell) nonlocal ”



Bell nonlocality

Bell scenario
x

a

y

b

P (a, b|x, y)

Assume that P ∈ Q is quantum

P (a, b|x, y) = 〈F xa ⊗G
y
b , ρAB〉.

Definition: P ∈ L is local if

P (a, b|x, y) =
∑
λ

p(λ) pA(a|x, λ) pB(b|y, λ).

Bell: L ( Q ⇐⇒ “ quantum mechanics is (Bell) nonlocal ”



Bell nonlocality

Bell scenario
x

a

y

b

P (a, b|x, y)

Assume that P ∈ Q is quantum

P (a, b|x, y) = 〈F xa ⊗G
y
b , ρAB〉.

Definition: P ∈ L is local if

P (a, b|x, y) =
∑
λ

p(λ) pA(a|x, λ) pB(b|y, λ).

Bell: L ( Q ⇐⇒ “ quantum mechanics is (Bell) nonlocal ”



Bell nonlocality

Given some P ∈ Q, how to show that P 6∈ L?

Real vector C = (cabxy) define

〈C,P 〉 :=
∑
abxy

cabxyP (a, b|x, y)

and
βL := max

P∈L
〈C,P 〉 (local value)

βQ := max
P∈Q
〈C,P 〉 (quantum value)

(suppose βL < βQ)

Bell violation: 〈C,P 〉 > βL =⇒ P 6∈ L



Bell nonlocality

Given some P ∈ Q, how to show that P 6∈ L?
Real vector C = (cabxy) define

〈C,P 〉 :=
∑
abxy

cabxyP (a, b|x, y)

and
βL := max

P∈L
〈C,P 〉 (local value)

βQ := max
P∈Q
〈C,P 〉 (quantum value)

(suppose βL < βQ)

Bell violation: 〈C,P 〉 > βL =⇒ P 6∈ L



Bell nonlocality

Given some P ∈ Q, how to show that P 6∈ L?
Real vector C = (cabxy) define

〈C,P 〉 :=
∑
abxy

cabxyP (a, b|x, y)

and
βL := max

P∈L
〈C,P 〉 (local value)

βQ := max
P∈Q
〈C,P 〉 (quantum value)

(suppose βL < βQ)

Bell violation: 〈C,P 〉 > βL =⇒ P 6∈ L



Bell nonlocality

Observation: Separable states give local statistics
(for all measurements)

ρAB =
∑
λ

pλσλ ⊗ τλ,

P (a, b|x, y) = 〈F xa ⊗G
y
b , ρAB〉 =

∑
λ

pλ · 〈F xa , σλ〉︸ ︷︷ ︸
pA(a|x,λ)

· 〈Gyb , τλ〉︸ ︷︷ ︸
pB(b|y,λ)

.

Nonlocality =⇒ entanglement

Can we make this connection more explicit/quantitative?
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Remark 1. Bell functional vs. Bell operator

For a Bell functional (cabxy) define the Bell operator as

W :=
∑
abxy

cabxyF
x
a ⊗G

y
b .

Easy to check that

〈C,P 〉 =
∑
abxy

cabxyP (a, b|x, y) =
∑
abxy

cabxy〈F xa⊗G
y
b , ρAB〉 = 〈W,ρAB〉.

Proving a bound on the quantum value βQ ≤ c is equivalent to
showing that

W ≤ c1

for all possible measurements choices.
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Remark 2. Measurements with two outcomes

Measurement: resolution of 1 into positive semidefinite operators

Measurements with two outcomes, i.e.

Fa = F †a , Fa ≥ 0, F0 + F1 = 1

are conveniently written as observables

A = F0 − F1.

This mapping is one-to-one: any A such that

A = A† and − 1 ≤ A ≤ 1

defines a valid measurement.
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CHSH self-testing

The CHSH operator reads

W := A0 ⊗ (B0 +B1) +A1 ⊗ (B0 −B1),

where −1 ≤ Aj ≤ 1 and −1 ≤ Bk ≤ 1.

Well known that βL = 2 and βQ = 2
√

2.

“The maximal violation β = 2
√

2 can be achieved in an
essentially unique manner”

[Tsirelson ’87], [Summers and Werner ’87], [Popescu and Rohrlich ’92]
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CHSH self-testing

Proof:
Define

V0 = A0 ⊗ 1− 1⊗ B0 +B1√
2

,

V1 = A1 ⊗ 1− 1⊗ B0 −B1√
2

.

Check

W =
1√
2

[
(A2

0 +A2
1)⊗ 1 + 1⊗ (B2

0 +B2
1)− (V †0 V0 + V †1 V1)

]
.

Conclude that W ≤ 2
√

2 1 =⇒ tr(WρAB) ≤ 2
√

2 = βQ, so the
SOS decomposition is tight.
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CHSH self-testing

W =
1√
2

[
(A2

0 +A2
1)⊗ 1 + 1⊗ (B2

0 +B2
1)− (V †0 V0 + V †1 V1)

]
Observing tr(WρAB) = 2

√
2 implies that:

1 All measurements are projective on the local supports:
tr(A2

xρA) = tr(B2
yρB) = 1.

2 Observables of Alice and Bob satisfy VjρAB = 0, e.g.

(A0 ⊗ 1)ρAB =

(
1⊗ B0 +B1√

2

)
ρAB.

If ρA and ρB are full-rank, then

A2
0 = 1 =⇒

(
B0 +B1√

2

)2

= 1 =⇒ {B0, B1} = 0.
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CHSH self-testing

These algebraic relations determine the form of observables

B2
0 = B2

1 = 1 and {B0, B1} = 0 =⇒
B0 = UB(σx ⊗ 1)U †B

B1 = UB(σz ⊗ 1)U †B

By symmetry A0 and A1 have the same form.
Construct W and determine the eigenspace corresponding to
λ = 2

√
2 (essentially a two-qubit operator).

Self-testing (rigidity) statement for CHSH: if β = 2
√

2 then

A0 = UA(σx ⊗ 1)U †A B0 = UB(σx ⊗ 1)U †B

A1 = UA(σz ⊗ 1)U †A B1 = UB(σz ⊗ 1)U †B

and

ρAB = U(ΦA′B′ ⊗ τA′′B′′)U † for U := UA ⊗ UB
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1 Find tight SOS decomposition.
2 Deduce algebraic relations between local observables.
3 Deduce their exact form (up to unitaries and extra degrees of

freedom).
4 Construct Bell operator and find eigenspace corresponding to βQ.
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A weak form of self-testing

Immediate consequence of self-testing: the maximal violation is
achieved by a unique probability point

qu
an
tu
m

se
t

lo
ca
l s
et

βL

βQ P ∗

What about Bell functionals that do not have a unique maximiser?
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A weak form of self-testing

In a scenario with 3 inputs and 2 outputs per party consider

W = A0⊗ (B0 +B1 +B2)+A1⊗ (B0 +B1−B2)+A2⊗ (B0−B1).

(the correlation part of the infamous I3322 functional)
Easy to show that βL = 4 and βQ = 5, but the maximal violation
is achieved by multiple probability points.

qu
an
tu
m

se
t

lo
ca
l s
et

βL

βQ

no unique maximiser =⇒ no rigidity statement

can we still have some weak form of self-testing?
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A weak form of self-testing

We already have a tight SOS decomposition

2W = (2A2
0 + 2A2

1 +A2
2)⊗ 1 + 1⊗ (2B2

0 + 2B2
1 +B2

2)−
2∑
j=0

V †j Vj ,

where

V0 = (A0 +A1)⊗ 1− 1⊗ (B0 +B1),

V1 = (A0 −A1)⊗ 1− 1⊗B2,

V2 = A2 ⊗ 1− 1⊗ (B0 −B1).

Observing β = 5 implies

tr(A2
jρA) = tr(B2

j ρB) = 1,

VjρAB = 0

for j = 0, 1, 2.
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A weak form of self-testing

Let us derive an explicit form of the observables. Rewriting
V1ρAB = 0 gives[

(A0 −A1)⊗ 1
]
ρAB = (1⊗B2)ρAB,

which combined with the full-rank assumption leads to

(A0 −A1)
2 = 1.

Together with projectivity this gives

HA ≡ C2 ⊗ CdA ,

A0 =
(

cos
π

6
X + sin

π

6
Z
)
⊗ 1,

A1 =
(

cos
π

6
X− sin

π

6
Z
)
⊗ 1.

(up to a choice of basis)
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A weak form of self-testing

Combining V0ρAB = 0 and V2ρAB = 0 gives
1

2

[
(A0 +A1 +A2)⊗ 1

]
ρAB = (1⊗B2)ρAB

and finally
(A0 +A1 +A2)

2 = 4 1.

Plugging in the previously derived characterisation of A0, A1 gives

(2 cos
π

6
X⊗ 1 +A2)

2 = 4 1.

Simple algebra yields

A2 =

dA∑
j=1

(
cosuj Y + sinuj Z

)
⊗ |ej〉〈ej |,

where uj ∈ [0, 2π) and {|ej〉}dAj=1 is an orthonormal basis on CdA .
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A weak form of self-testing

X,Y, Z

A0, A1 (fixed)

A2 (flexible)



A weak form of self-testing

By symmetry the same characterisation holds for the observables
of Bob. The Bell operator reads

W =

dA∑
j=1

dB∑
k=1

R(uj , vk)⊗ |ej〉〈ej | ⊗ |fk〉〈fk |,

where R(uj , vk) is a two-qubit operator.

Diagonalising R(uj , vk) shows that λ = 5 belong to the spectrum
iff uj = vk.
The corresponding eigenvector is the standard maximally
entangled state |Φ+〉 = 1√

2
(|00〉+ |11〉) (smart parameterisation)

Finally, the global state must be of the form

ρAB = Φ+
A′B′ ⊗ σA′′B′′ ,

where σA′′B′′ is a normalised state satisfying

tr
(
σA′′B′′ |ej〉〈ej | ⊗ |fk〉〈fk |

)
= 0 if uj 6= vk.
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2
(|00〉+ |11〉) (smart parameterisation)

Finally, the global state must be of the form

ρAB = Φ+
A′B′ ⊗ σA′′B′′ ,

where σA′′B′′ is a normalised state satisfying

tr
(
σA′′B′′ |ej〉〈ej | ⊗ |fk〉〈fk |

)
= 0 if uj 6= vk.



A weak form of self-testing

By symmetry the same characterisation holds for the observables
of Bob. The Bell operator reads

W =

dA∑
j=1

dB∑
k=1

R(uj , vk)⊗ |ej〉〈ej | ⊗ |fk〉〈fk |,

where R(uj , vk) is a two-qubit operator.
Diagonalising R(uj , vk) shows that λ = 5 belong to the spectrum
iff uj = vk.
The corresponding eigenvector is the standard maximally
entangled state |Φ+〉 = 1√

2
(|00〉+ |11〉) (smart parameterisation)

Finally, the global state must be of the form

ρAB = Φ+
A′B′ ⊗ σA′′B′′ ,

where σA′′B′′ is a normalised state satisfying

tr
(
σA′′B′′ |ej〉〈ej | ⊗ |fk〉〈fk |

)
= 0 if uj 6= vk.



A weak form of self-testing

Conclusion: there is a family of optimal strategies parametrised by
u ∈ [0, 2π) and every optimal strategy is just a convex
combination of those.
What happens in the space of correlations?
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1. The face is a line segment.
2. The endpoints are self-tests in the usual strong sense.
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Certifying randomness

Setup: Alice and Bob observe Bell violation, Eve is trying to guess
the outcome of Alice for a specific setting. We start with A2:
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Certifying randomness

Luckily A0 and A1 are much better!
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Conclusions:
A new weak form of self-testing: the maximal violation certifies
the state, but not the measurements.
Nevertheless, the randomness certification power is not
significantly affected.

Open questions:
Is the self-testing robust? How to construct an extraction channel
which depends on 3 observables (instead of the usual 2)?
Can we find a scenario in which the non-rigidty has a significant
impact, e.g. for randomness certification?
Can we find a bipartite Bell inequality which can be maximally
violated by distinct states? (exists for 3 parties)

see also related independent work by Jebarathinam et
al. arXiv:1905.09867 (based on lifting)

Thank you for your attention!
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