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Assume that P € Q is quantum
P(a’a b|$7 y) = <‘Faz ® Gi/, PAB>'
Definition: P € L is local if

P(astr5) = 50 pa(els, ) (i V)

Bell: £ C Q <= “ quantum mechanics is (Bell) nonlocal ”
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Given some P € Q, how to show that P ¢ L7
Real vector C' = (cqpay) define

<07 P> = Z Cab:vyP(aa b|.’L’,y)
abzy

and
Br = max (C, P) (local value)

= C,P t 1
Bo %135( , P) (quantum value)

(suppose fr < Bo)
Bell violation: (C,P) >, — P ¢ L
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Bell nonlocality

Observation: Separable states give local statistics
(for all measurements)

PAB = ZPAU)\ @ T,
)

P(a7b‘$7y) <Fx®GbapAB Zp)\ <Gb?7—)\> .
——
pA(all‘ A pe(ly,N)

Nonlocality = entanglement

Can we make this connection more explicit/quantitative?
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Remark 1. Bell functional vs. Bell operator

e For a Bell functional (cqpqy) define the Bell operator as

W= caayFy @Gy,
abxy

o Easy to check that

<Cv P> = Z cabxyp(av b|3§‘, y) = Z Cabxy<F¢f®Gga pAB> = <VV> pAB>'
abxy abxy

e Proving a bound on the quantum value g < ¢ is equivalent to
showing that
W<ecl

for all possible measurements choices.
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Remark 2. Measurements with two outcomes

@ Measurement: resolution of 1 into positive semidefinite operators

@ Measurements with two outcomes, i.e.
F,=Fl, F,>0, Fo+F =1
are conveniently written as observables

A=F - F.

o This mapping is one-to-one: any A such that
A=A and -1<A4<1

defines a valid measurement.
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CHSH self-testing

o The CHSH operator reads
W = Ay ® (By+ B1) + A1 ® (By — B1),

where -1 < A;<land -1< B, <1

o Well known that 8, = 2 and g = 2v/2.

“The maximal violation § = 2v/2 can be achieved in an
essentially unique manner”

[Tsirelson ’87|, [Summers and Werner ’87|, [Popescu and Rohrlich "92]
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CHSH self-testing

Proof:
@ Define
By + By
W=41-1Q ———,
0 0 \/5
By — B
VI:A1®1—1®70\@ L
@ Check

1
W=ﬁ[(A%+A%)®1+1®(BS+B%)—(%TVo+VJV1>]-

o Conclude that W < 2v21 = tr(Wpap) < 2v/2 = g, so the
SOS decomposition is tight.
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@ All measurements are projective on the local supports:
tr(A2pa) = tr(B2pp) = 1.
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CHSH self-testing

1
W= 543+ A e1+1e B+ B - (W1 + Vi)
Observing tr(Wpap) = 2v/2 implies that:
@ All measurements are projective on the local supports:
tr(AZpa) = tr(Bjpp) = 1.
@ Observables of Alice and Bob satisfy Vijpap =0, e.g.

By + B
(Ao ®1)pap = (1 ® 01>PAB-

V2

If pa and pp are full-rank, then

By + B1\?
A%:1:> <0\—/+_>21> :1:>{Bo,Bl}:0.
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CHSH self-testing

@ These algebraic relations determine the form of observables

By = Up(0, @ 1)U},

B2=B?=1 and {By,B} =0 = ;
B; = UB(O'Z & l)UB

e By symmetry Ag and A; have the same form.

o Construct W and determine the eigenspace corresponding to
A\ = 21/2 (essentially a two-qubit operator).

Self-testing (rigidity) statement for CHSH: if § = 2v/2 then
Ao =Ua(o, @ YUY By =Uglo, ® 1)U},
Ay =Ua(o. @)UY Bi=Up(o. @ 1)UL
and

PAB :U((ﬁAxB/(8’7'A//B//)Uv]L for U := UA®UB
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@ Deduce their exact form (up to unitaries and extra degrees of
freedom).

© Construct Bell operator and find eigenspace corresponding to So.
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o In a scenario with 3 inputs and 2 outputs per party consider
W = Ag® (Bo+ B1+ B2) + A1 @ (Bo + B1 — B2) + A2 ® (Bo — B1).

(the correlation part of the infamous I3322 functional)
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A weak form of self-testing

o In a scenario with 3 inputs and 2 outputs per party consider
W =Ao®(Bo+ B1+ B2)+ A1 ®(Bo+ By — B2) + A2 ® (By — By).

(the correlation part of the infamous I3329 functional)
e Easy to show that 8, =4 and g = 5, but the maximal violation
is achieved by multiple probability points.
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no unique maximiser = no rigidity statement

can we still have some weak form of self-testing?
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A weak form of self-testing

o We already have a tight SOS decomposition
2
oW = (243 + 247 + A}) ® 1+ 1@ (2B3 + 2B} + B3) - > V]V,
§=0

where

%Z(A0+A1)®1—1®(30+Bl),
V1:(A0—A1)®1—1®BQ,
V2:A2®1—1®(B(]—Bl).

@ Observing 8 = 5 implies
tr(A?pA) = tr(BszB) =1,
Vipap =0
for j=0,1,2.
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Vipap = 0 gives
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A weak form of self-testing

o Let us derive an explicit form of the observables. Rewriting
Vipap = 0 gives

(Ao — A1) ® 1] pap = (1 ® Ba)pas,
which combined with the full-rank assumption leads to

(Ag— A))* =1.

o Together with projectivity this gives

Hy=C?xC%4,
Ay = (cos%X—i-sin%Z) ®1,
Al = (cos%X—sin%Z) ® 1.

(up to a choice of basis)
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o Combining Vppap = 0 and Vopap = 0 gives

1
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and finally
(Ao + A+ A2)2 =41.
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A weak form of self-testing

o Combining Vppap = 0 and Vopap = 0 gives

1
5 [(Ao + Ay + AQ) & 1] PAB = (1 & BQ),OAB

and finally
(Ao + A1 + A2)2 =41

o Plugging in the previously derived characterisation of Ag, A1 gives

(2COS%X®1+A2)2 =41.

e Simple algebra yields

da
=3 (i ¥ sy 2 ol
Jj=1

where u; € [0,27) and {|ej>};-li | is an orthonormal basis on C4.
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— Aj (flexible)




A weak form of self-testing

o By symmetry the same characterisation holds for the observables
of Bob. The Bell operator reads

da dp

W = ZZR(Uj,’Uk) & |€j><ej| ® |fk><fk|a

j=1 k=1

where R(uj,vy) is a two-qubit operator.
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A weak form of self-testing

o By symmetry the same characterisation holds for the observables
of Bob. The Bell operator reads

da dp
W=2 > Rluj,v) ®le)le;| @ fi) (fil,
j=1 k=1
where R(uj,vy) is a two-qubit operator.
e Diagonalising R(u;,v)) shows that A = 5 belong to the spectrum
iff Uj = Vg.
@ The corresponding eigenvector is the standard maximally
entangled state |®T) = %UOO) +|11)) (smart parameterisation)
o Finally, the global state must be of the form

paB = Pl p @ oanpr,
where o7 pr is a normalised state satisfying

tr (oarpres)e;| @ [ fu)(ful) =0 if u; # v
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Conclusion: there is a family of optimal strategies parametrised by
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What happens in the space of correlations?
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A weak form of self-testing

Conclusion: there is a family of optimal strategies parametrised by
u € [0,27) and every optimal strategy is just a convex
combination of those.

What happens in the space of correlations?

PN

u=0 u=m/2 u=m related by

o ® L] . .
u=3m/2 complex conjugation

o
& 5
&

"b& N
X 2o}
< )
,é? '\9
[

1. The face is a line segment.

2. The endpoints are self-tests in the usual strong sense.
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Certifying randomness

Setup: Alice and Bob observe Bell violation, Eve is trying to guess
the outcome of Alice for a specific setting. We start with As:

101 —— upper bound
RN --- best attack

0.9
randomness guaranteed
only when 5 > 4.5

(B =4)

00
4.5 4.6 4.7 4.8 4.9 5.0 0

0.8

Pguess (A2 ’E)

0.6 4
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Certifying randomness

Luckily Ag and A; are much better!

1.0

—— upper bound
3 --- best attack

0.91

0.8

pguess (AO | E)
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Certifying randomness

Luckily Ag and A; are much better!

10 —— upper bound

. --- best attack |randomness guaranteed
for all g > 4

0.6 1

0.54

, , , , , , randomness profile
4.0 4.2 4.4 4.6 4.8 5.0

38 similar to CHSH
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Conclusions:

o A new weak form of self-testing: the maximal violation certifies
the state, but not the measurements.

o Nevertheless, the randomness certification power is not
significantly affected.

Open questions:

o [s the self-testing robust? How to construct an extraction channel
which depends on 3 observables (instead of the usual 2)7

o Can we find a scenario in which the non-rigidty has a significant
impact, e.g. for randomness certification?

o Can we find a bipartite Bell inequality which can be maximally
violated by distinct states? (exists for 3 parties)

see also related independent work by Jebarathinam et
al. arXiv:1905.09867 (based on lifting)

Thank you for your attention!



