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What is nonlocality?

Bell scenario
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Pr[a, b|x, y]

Def.: Pr[a, b|x, y] is local if

Pr[a, b|x, y] =
∑
λ

p(λ) p(a|x, λ) p(b|y, λ).

Otherwise =⇒ nonlocal or it violates (some) Bell inequality
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What is nonlocality?

Assume quantum mechanics. . . what can I deduce about my system?

Entanglement: separable states always produce local statistics

ρAB =
∑
λ

pλσλ ⊗ τλ,

Pr[a, b|x, y] = tr
[
(P xa ⊗Q

y
b )ρAB

]
=
∑
λ

pλ · tr(P xa σλ)︸ ︷︷ ︸
p(a|x,λ)

· tr(Qybτλ)︸ ︷︷ ︸
p(b|y,λ)

what else?

self-testing study
you must
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What is self-testing?

Given Pr[a, b|x, y] = tr
[
(P xa ⊗Q

y
b )ρAB

]
deduce properties of ρAB, (P xa ), (Qyb )

(don’t assume that ρAB is pure or measurements are projective,
deduce it instead!)

often only promised some Bell violation∑
abxy

cxyab Pr[a, b|x, y] = β
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∑
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What is self-testing?

Why care about self-testing of measurements?
significantly less studied (particularly in the robust regime)
relevant for (two-party) device-independent cryptography
pinning down the optimal measurements immediately gives the
optimal state
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The CHSH inequality

Measurements with two outcomes

Fj = F †
j ,

Fj ≥ 0,

F0 + F1 = 1

Conveniently written as observables

A = F0 − F1

One-to-one mapping, i.e. any

A = A† and − 1 ≤ A ≤ 1

corresponds to a valid measurement
[for projective measurements A2 = 1]
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The CHSH inequality

The CHSH value

β := tr
(
WρAB

)
for W := A0 ⊗ (B0 +B1) +A1 ⊗ (B0 −B1)

Classically β ≤ 2, but quantumly can reach up to 2
√

2

What can we deduce from β > 2?

square the Bell operator, fool!
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The CHSH inequality

If A2
j = B2

k = 1, then

W 2 = 4 · 1⊗ 1− [A0, A1]⊗ [B0, B1].

In general (A2
j , B

2
k ≤ 1)

W 2 ≤ 4 · 1⊗ 1− [A0, A1]⊗ [B0, B1].

Simple upper bounds

W 2 ≤ 4 · 1⊗ 1 + |[A0, A1]⊗ [B0, B1]|
= 4 · 1⊗ 1 + |[A0, A1]| ⊗ |[B0, B1]|
≤ 4 · 1⊗ 1 + 2|[A0, A1]| ⊗ 1.



The CHSH inequality

If A2
j = B2

k = 1, then

W 2 = 4 · 1⊗ 1− [A0, A1]⊗ [B0, B1].

In general (A2
j , B

2
k ≤ 1)

W 2 ≤ 4 · 1⊗ 1− [A0, A1]⊗ [B0, B1].

Simple upper bounds

W 2 ≤ 4 · 1⊗ 1 + |[A0, A1]⊗ [B0, B1]|
= 4 · 1⊗ 1 + |[A0, A1]| ⊗ |[B0, B1]|
≤ 4 · 1⊗ 1 + 2|[A0, A1]| ⊗ 1.



The CHSH inequality

W 2 ≤ 4 · 1⊗ 1 + 2|[A0, A1]| ⊗ 1.

The Cauchy-Schwarz inequality[
tr(WρAB)

]2 ≤ tr(W 2ρAB) · tr ρAB = tr(W 2ρAB)

leads to
β ≤ 2

√
1 + t,

where t := 1
2 tr

(
|[A0, A1]|ρA

)
.

Bell violation certifies incompatibility of observables!
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The CHSH inequality

The quantity

t :=
1

2
tr
(
|[A0, A1]|ρA

)
invariant under local unitaries and adding auxiliary systems
easy to compute
clear operational interpretation as “weighted average”
t = 1 (max. value) implies

UA0U
† = σx ⊗ 1,

UA1U
† = σy ⊗ 1.

[assuming ρA is full-rank]

=⇒ t = “distance from the optimal arrangement”
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The CHSH inequality

The relation
β ≤ 2

√
1 + t,

is non-trivial as soon as β > 2

is tight

CHSH violation certifies closeness to the optimal
arrangement
BONUS: β = 2

√
2 implies t = 1 and so

UA0U
† = σx ⊗ 1,

UA1U
† = σy ⊗ 1

By symmetry the same applies to Bob, so W (up to local unitaries) is
just a two-qubit operator tensored with identity =⇒ finding
the optimal state is easy
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The CHSH inequality

Complete rigidity statement: if β = 2
√

2 then there exists
U = UA ⊗ UB and τA′B′

ρAB = U(ΦAB ⊗ τA′B′)U †,

where ΦAB = EPR pair and

UAA0U
†
A = σx ⊗ 1,

UAA1U
†
A = σy ⊗ 1,

UBB0U
†
B = σx ⊗ 1,

UBB1U
†
B = σy ⊗ 1.

very similar to the original proof by Popescu and Rohrlich
[generalises straightforwardly to multipartite inequalities:
Mermin/MABK inequalities]
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The biased CHSH inequality

For α ≥ 1 the biased CHSH value

β := tr
(
WαρAB

)
for

Wα := α(A0 +A1)⊗B0 + (A0 −A1)⊗B1.

Classically β ≤ 2α, but quantumly we can reach up to 2
√
α2 + 1.

optimal state: maximally entangled of 2 qubits
optimal observables of Bob: maximally incompatible
optimal observables of Alice: non-maximally incompatible!



The biased CHSH inequality

Analogous argument leads to

βα ≤ 2
√
α2 + tα

for tα := tr(TαρA), where

Tα :=
α2 − 1

4

(
{A0, A1} − 2 · 1

)
+
α

2
|[A0, A1]|.

for α = 1 we recover CHSH
setting [A0, A1] = 0 yields the classical bound
tα = 1 (max. value) implies

UA0U
† = σx ⊗ 1

UA1U
† = (cos θα σx + sin θα σy)⊗ 1

Any pair of qubit observables can be robustly certified!
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Multiple anticommuting observables

Problem with 3 anticommuting observables: cannot distinguish

(σx, σy, σz) vs. (σx,−σy, σz)

[not unitarily equivalent; related by transposition]

Standard self-testing statement: exists projective observable Υ
(Υ2 = 1):

UA0U
† =σx ⊗ 1

UA1U
† =σy ⊗Υ

UA2U
† =σz ⊗ 1

[direct sum of the two arrangements]

Not symmetric
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Multiple anticommuting observables

A simple extension of CHSH gives

tr
(
|[A0, A1]|ρA

)
= tr

(
|[A0, A2]|ρA

)
= tr

(
|[A1, A2]|ρA

)
= 2

[generalises straightforwardly to arbitrary number]

Simple and symmetric

Good news: the two are equivalent!

It is “natural” to formulate self-testing statements in terms
of commutation
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Summary

Commutation-based formulation is convenient: tight self-testing
relations from elementary algebra
For every angle on a qubit there exists a simple (easy to evaluate)
commutation-based function which measures distance to
this arrangement
Every such arrangement can be certified in a robust manner
Knowing the commutation structure immediately gives a full
rigidity statement



Open problems

What about arrangements of observables that “do not fit” into a
qubit? E.g. the maximal violation of I3322 requires large
dimension (in fact, conjectured to be ∞).
What is the commutation structure of the optimal
observables?
What about observables with more outcomes?
E.g. Heisenberg-Weyl observables satisfy “twisted commutation
relation”

ZdXd = ωXdZd
(
ω = e2πi/d

)
.

Can we find an inequality which certifies precisely this
relation?



So you can really certify
quantum systems without
trusting the devices at all?

Yes, Pooh, quantum mechanics
is very strange and nobody really

understands it but let’s talk
about it some other day...


