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Bell nonlocality

Bell scenario

x
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b

Pr[a, b|x, y]

Def.: Pr[a, b|x, y] is local if

Pr[a, b|x, y] =
∑
λ

p(λ) pA(a|x, λ) pB(b|y, λ).

Otherwise =⇒ nonlocal or it violates (some) Bell inequality
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Bell nonlocality

Obs.: Separable states give local statistics (for all measurements)

ρAB =
∑
λ

pλσλ ⊗ τλ,

Pr[a, b|x, y] = tr
[
(F xa ⊗G

y
b )ρAB

]
=
∑
λ

pλ · tr
(
F xa σλ

)︸ ︷︷ ︸
pA(a|x,λ)

· tr
(
Gybτλ

)︸ ︷︷ ︸
pB(b|y,λ)

.



Bell nonlocality

ρAB is separable =⇒ statistics are local

Pr[a, b|x, y] is nonlocal =⇒ ρAB is entangled

Question: can we make any more refined statements?

Answer: self-testing
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Self-testing

Given Pr[a, b|x, y] = tr
[
(F xa ⊗G

y
b )ρAB

]
deduce properties of ρAB, {F xa }, {G

y
b}

(i) we do not assume that ρAB is pure
or that the measurements are projective
(we want to rigorously deduce it!)

(ii) often only promised some Bell violation∑
abxy c

xy
ab Pr[a, b|x, y] = β
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Self-testing

Measurement: resolution of 1 into positive semidefinite operators

Measurements with two outcomes, i.e.

Fj = F †j ,

Fj ≥ 0,

F0 + F1 = 1

are conveniently written as observables

A = F0 − F1.

This mapping is one-to-one: any A such that

A = A† and − 1 ≤ A ≤ 1.

defines a valid measurement
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Self-testing

Example: the CHSH inequality [1, 2]

β := tr
(
WρAB

)
for W := A0 ⊗ (B0 +B1) +A1 ⊗ (B0 −B1)

Classically β ≤ 2, but quantumly we can reach up to 2
√

2

|ΦA′B′〉 =
1√
2

(|00〉+ |11〉)

A0 = σx, B0 =
σx + σz√

2
,

A1 = σz, B1 =
σx − σz√

2
.

canonical realisation
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Self-testing

CHSH is a self-test, i.e. every realisation that achieves β = 2
√

2 is
equivalent to the canonical one.

ρAB = ΦA′B′

A0 = σx

A1 = σz

B0 = σx+σz√
2

B1 = σx−σz√
2

Inherent limitations
• cannot see auxiliary systems (ignored by measurements)

⊗ τA′′B′′

⊗ 1

⊗ 1

B0 = ⊗ 1

B1 = ⊗ 1

• cannot see local unitaries

U( )U †

UA
( )

U †A

UA
( )

U †A

B0 = UB
( )

U †B

B1 = UB
( )

U †B

for U = UA ⊗ UB

“CHSH is rigid”
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Self-testing

Rigidity is related to the geometry of the quantum set of
correlations, e.g. for the CHSH inequality we have

qu
an
tu
m

se
t

lo
ca
l s
et

β = 2

β = 2
√

2 pCHSH
unique maximiser
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Self-testing

but for some other inequalities [3, 4, 5]
qu
an
tu
m

se
t

lo
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l s
et

βL

βQ

no unique maximiser =⇒ no rigidity statement
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Self-testing

Rigidity has been shown for:
CHSH inequality [1, 2]
tilted/biased CHSH inequality [6, 7, 8]
chained Bell inequalities [9]
tripartite Mermin inequality [10], MABK inequalities [8]
magic square [11] and magic pentagram game [12]
. . .

Exciting, can I see it in an experiment?
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Robust self-testing

In the lab we never measure β = 2
√

2

(i) no perfect experiments
(ii) finite statistics

Instead, we may observe β ≈ 2.7 or 2.4

In such a case, we would still expect that the quantum realisation
must somehow resemble the canonical one

What is the right mathematical formulation of this statement?
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Robust self-testing

Approach 1 (generic): require all equalities to hold up to some ε

β = 2
√

2 =⇒ ρAB = U(ΦA′B′ ⊗ τA′′B′′)U †,

β = 2
√

2− ε =⇒
∣∣∣∣ρAB − U(ΦA′B′ ⊗ τA′′B′′)U †

∣∣∣∣
1
≤ f(ε).

In such a stringent formulation f(ε) grows very fast, non-trivial
statement only for almost maximal violations (for CHSH only if
ε < 10−4)

Might be good enough for complexity-theoretic applications, but is it
relevant from the physics point of view?

Approach 2 (specific): choose one particular property and use a
measure tailored to certify that property
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Robust self-testing

Robust certification of quantum states

ρAB = U(ΨA′B′ ⊗ τA′′B′′)U †

⇐⇒
∃ΛA : A→ A′,

ΛB : B → B′

s.t. (ΛA ⊗ ΛB)(ρAB) = ΨA′B′

If cannot extract a perfect copy, then...?



Robust self-testing

Robust certification of quantum states

ρAB = U(ΨA′B′ ⊗ τA′′B′′)U †

⇐⇒
∃ΛA : A→ A′,

ΛB : B → B′

s.t. (ΛA ⊗ ΛB)(ρAB) = ΨA′B′

If cannot extract a perfect copy, then...?



Robust self-testing

Extractability of ΨA′B′ from ρAB [13, 14]

Ξ(ρAB → ΨA′B′) := maxΛA,ΛB
F
(
(ΛA ⊗ ΛB)(ρAB),ΨA′B′

)
local extraction channels fidelity

Obs1: Ξ(ρAB → ΨA′B′) = 1 ⇐⇒ ρAB = U(ΨA′B′ ⊗ σA′′B′′)U †

Obs2: Ξ(ρAB → ΨA′B′) ∈ [λ2
max, 1]

largest Schmidt coefficient
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Robust self-testing

Extractability is an operational quantity – once we have a good
quality singlet, we can use it for any task for which a perfect singlet
can be used

Given a state σAB ∈ S(Cd ⊗ Cd) the singlet fraction is defined as

max
U=UA⊗UB

F
(
UσABU

†,Φd
AB

)
for Φd = 1√

d

∑
j |j〉|j〉

Singlet fraction captures how useful σAB is for teleporting a
qudit [15]

Extractability is a slightly more general notion (can deal with
dimension mismatch), but has similar operational significance



Robust self-testing

In this formulation the goal is to derive lower bounds

Ξ(ρAB → ΨA′B′) ≥ f(β)

The bound is nontrivial if

f(β) > λ2
max



Robust self-testing

Example 1: CHSH inequality (βC = 2 and βQ = 2
√

2) [13, 16, 14]
Lower bounds on extractability of 1√

2
(|00〉+ |11〉)

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

β

0.25

0.50

0.75

1.00

Bardyn et al. [BLM+09]

Bancal et al. [BNS+15]

Kaniewski [Kan16]

non-trivial for
β > (16 + 14

√
2)/17 ≈ 2.11

?
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Robust self-testing

Example 2: Mermin inequality (βC = 2 and βQ = 4) [17, 14]
Lower bounds on extractability of 1√

2
(|000〉+ |111〉)

2.8 3.0 3.2 3.4 3.6 3.8 4.0

β

0.25

0.50

0.75

1.00

Pál et al. [PVN14]

Kaniewski [Kan16]

tight :)
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Robust self-testing

Certification of measurements

The optimal CHSH measurements

A0 = UA
(
σx ⊗ 1

)
U †A

A1 = UA
(
σz ⊗ 1

)
U †A

Equivalent formulation in terms of algebraic relations

A2
0 = A2

1 = 1 (projectiveness)
A0A1 +A1A0 = 0 (anticommutation)
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Robust self-testing

Idea: instead of certifying closeness to the canonical realisation
certify algebraic relations between observables [8]

Convenient because
it is clear how to measure “approximate” satisfaction of algebraic
relations
such quantities appear naturally in the analysis of the Bell
operator
non-trivial statements can be made for arbitrarily small violations
can be used to guarantee uncertainty (useful for DI cryptography)

This might not be the ultimate answer, but for binary observables
these quantities have all the desired properties
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Summary and open questions

Summary:
self-testing = certification of bi- or multipartite quantum systems
under minimal assumptions
direct link between the macroscopic and microscopic worlds
insight into the geometry of the quantum set of correlations
applications for device-independent cryptography



Summary and open questions

Open questions:
which Bell inequalities are rigid and why? how generic is this
phenomenon?
all bipartite pure states can be self-tested [18], but some
tripartite cannot: why?
which arrangements of measurements can be self-tested and how?
what is the “correct” formulation for robust self-testing of
measurements?



So you can really certify
quantum systems without
trusting the devices at all? Yes, Pooh, quantum

mechanics is very strange and
nobody really understands it, but
let’s talk about it another day. . .
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