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d

Commit phase

Open phase I know d now!

Correctness: both honest =⇒ Bob always accepts the commitment
Hiding: Alice honest =⇒ Bob does not know d before the open phase
Binding: Bob honest =⇒ ∃ only one value of d that Alice can unveil
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The classical no-go

Theorem (Classical no-go)

Any protocol that is correct and hiding allows Alice to cheat perfectly.

Intuition: if at the end of the commit phase Bob is ignorant about d then
for both values of d there must exist an opening strategy for Alice that
will make him accept.

How could communication constraints possibly help to avoid this?

Maybe cheating becomes difficult if it has to be coordinated between
multiple non-communicating agents?

It only makes sense to split a party during their “turn to cheat”



The classical no-go

Theorem (Classical no-go)

Any protocol that is correct and hiding allows Alice to cheat perfectly.

Intuition: if at the end of the commit phase Bob is ignorant about d then
for both values of d there must exist an opening strategy for Alice that
will make him accept.

How could communication constraints possibly help to avoid this?

Maybe cheating becomes difficult if it has to be coordinated between
multiple non-communicating agents?

It only makes sense to split a party during their “turn to cheat”



The classical no-go

Theorem (Classical no-go)

Any protocol that is correct and hiding allows Alice to cheat perfectly.

Intuition: if at the end of the commit phase Bob is ignorant about d then
for both values of d there must exist an opening strategy for Alice that
will make him accept.

How could communication constraints possibly help to avoid this?

Maybe cheating becomes difficult if it has to be coordinated between
multiple non-communicating agents?

It only makes sense to split a party during their “turn to cheat”



Receiver split in the commit phase

Idea #1: maybe the combined information of Bob1 and Bob2 determines
the commitment but ...?

d

r ∈R {0, 1}

d ⊕ r

individual Bobs learn nothing
about d as long as no

communication is allowed

as soon as communication
is allowed the commitment

is unveiled

secret-sharing BC
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Committer split in the open phase

Idea #2: maybe Alice1 and Alice2 find it difficult to coordinate the
openings?

Good start but...
...what is the exact definition of cheating in the split committer model?
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Security for honest Bob as a game

1 Alice performs a generic commit strategy
2 Alice is challenged to open one of the bits with equal probabilities
3 Alice wins if Bob accepts the commitment

Want: pwin ≤ 1
2 + ε for all strategies of dishonest Alice

Ideally, ε should be exponentially small in the number of bits exchanged

[Note that 2 pwin = p0 + p1 for pd = “probability that Alice successfully unveils d”

=⇒ equivalent to the usual requirement p0 + p1 ≤ 1+ 2ε]

Question: Who receives the challenge? Both Alices or just one of them?

If just one (local command) then simple checking for consistency is
sufficient.

If both (global command) then we need to try harder...
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Committer split in the open phase

Strongly split committer (both commit and open phases):

1
a ∈R {0, 1}n
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b ∈R {0, 1}n

d

b

d · b ⊕ a

commit

Bob learns nothing because the message is one-time-padded

0 if d = 0
b if d = 1

a open
the XOR of Alices’ answers must equal d · b

Intuition: Alice2 cannot cheat because she does not know b

one-time pad BC (Ben-Or et al., Kent, Simard et al.)
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Committer split in the open phase

Weakly split committer (only open phase):

Both Alices have full information about the commit phase and they can
agree on a consistent cheating strategy; the no-go still holds.

In the classical case splitting at this stage does not make any difference
because everything can be copied...
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In the classical world...

split model BC possible?
split receiver yes (secret-sharing BC)

weakly split committer no
strongly split committer yes (one-time pad BC)

Does quantum make any difference?
Yes!

strongly split committer: security proof for honest Bob against
quantum adversaries for one-time pad BC necessary!
weakly split committer: the no-go does not apply anymore!
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2 + 1

2n
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(tight)

exponential decay
conjectured to be
(essentially) tight

quantum-classical gap
quantum adversary strictly more powerful
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Timed commitments

Secret-sharing BC essentially “opens itself”.
One-time pad BC must be opened before a certain time, after that
it expires without revealing any information.
BC by transmitting measurement outcomes can be opened any
time but the commitment is only valid for a fixed period before the
opening.

In the relativistic scenario nothing can be permanently secure...
It is not clear how powerful these primitives are...

Can we increase the commitment time by requiring multiple rounds of
communication?
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≡

For two rounds (classical or quantum)
Relativistic ≡ Two isolated provers
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A new multi-round protocol [Lunghi et al.]

ak , bk ∈R {0, 1}n
consecutive rounds must
be space-like separated

Commit b1

y1 = d · b1 ⊕ a1
Sustain b2

y2 = a1 ∗ b2 ⊕ a2

finite field multiplication
over GF (2n)bm

ym = am−1 ∗ bm ⊕ am

Open d , ym+1 = am

accept iff
V (d , b1, y1, . . . , bm, ym, ym+1) = 1

acceptance predicate

Security for honest Alice
guaranteed by the XOR
Security for honest Bob

more complicated...
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A new multi-round protocol – honest Bob

Conclusions:
End up with a complicated game of m + 1 non-communicating
players; exact cheating probability is hard to calculate.
Can be relaxed to a very simple-looking problem of computing a
certain function in the “Number on the Forehead” model. For
m = 2 it is exactly the finite-field generalisation of CHSH.
Equivalent to counting the number of zeroes of a certain family of
multivariate polynomials over finite field GF (2n).
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Final result: Security for honest Bob with ε ≈ 2−n/2m
.

Security deteriorates drastically as m increases.

In principle, an arbitrary long commitment is possible (at the price
of very large n).
In practice, technology puts a limit on n so the commitment time is
limited.
Looks very similar to communication complexity lower bounds
for this model: Ω( n

2m ).
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Thanks for you attention!



Finite-field, multiprover generalisation of CHSH

Fq – finite field of size q, X1, X2 drawn uniformly at random. What are
the best local functions that simulate the X1X2 (can we argue that this is
the “hardest” function to simulate?), i.e. we are trying to maximise

Pr[X1X2 = f1(X1) + f2(X2)].

Trivial strategy gives 1
q , some probabilistic arguments might give log q

q but
by connecting it to some algebraic geometry problem one can show that
there exists strategy that achieves Ω(q−2/3) (see Bavarian and Shor).
Unfortunately, no explicit strategies are known.
This is exactly what we get for m = 2, for more we are trying to satisfy

m∏
k=1

Xk =
m∑

k=1

fk(X[m]\{k}),

which is the number on the forehead model.


