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@ What is a commitment scheme?

o Why relativistic?

@ Short story of relativistic bit commitment

@ Two-round protocol by Simard (limited commitment time)
@ A new multi-round protocol (arbitrarily long commitment)

@ Two and more rounds in practice
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Commit phase




Commitment scheme — cheating objectives

X

The commit phase is over...



Commitment scheme — cheating objectives
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Bob goes mad!



Commitment scheme — cheating objectives

O
O
o

X

He wants to break the safe and read the message!



Commitment scheme — cheating objectives
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Alice goes mad!



Commitment scheme — cheating objectives

She wants to influence the message and change her commitment!
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Bit commitment — security models

Angry Bob:
“whatever | do,
| cannot guess d!”




Bit commitment — security models

Angry Bob:
“whatever | do,
| cannot guess d!”

Goal:
transcripts for
d=0andd=1
should be
indistinguishable



Bit commitment — security models

Angry Alice: —

“don’t want

to commit!” ~




Bit commitment — security models

Angry Alice: —
“don’t want
to commit!” ~

Open d,...
/\
\_/

Cheating: .

3 “generic’ commit :
strategy s.t. Alice can later ~——1H—_—
open both d =0and d =1
with (reasonably)
high probabilities



Bit commitment — security models

Security for honest Bob as a game

Q Alice performs a generic commit strategy

@ Alice is challenged to open one of the bits with equal
probabilities

© Alice wins iff Bob accepts the commitment



Bit commitment — security models

Security for honest Bob as a game

Q Alice performs a generic commit strategy

@ Alice is challenged to open one of the bits with equal
probabilities

© Alice wins iff Bob accepts the commitment

Want: puin < % + ¢ for all strategies of dishonest Alice
Ideally, € should be exponentially small in number of bits exchanged

[Note that 2 pyin = po + p1 for pg = “probability that Alice successfully unveils d”

= equivalent to the usual requirement pg + p1 < 1 + 2¢]
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Why relativistic?

space-like separated = no communication

For two rounds (classical or quantum)
Relativistic = Two isolated provers

—> compact, tractable description
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Communication constraints

S allow more than m
but less than Elz‘

No simple description in terms
of non-communication models...
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Short story of relativistic bit commitment

@ First two-round protocol proposed by Ben-Or et al. in 1988;
established security against classical adversaries

@ First multi-round protocol proposed by Kent in 1999
arbitrary length but exponential blow-up in communication

@ Further combined with a compression scheme to achieve
constant communication rate [Kent'05]

@ Simard in 2007 simplified the protocol by Ben-Or et al. and
proved security against a restricted class of quantum attacks

@ Two (two-round) quantum protocols by Kent in 2011 and 2012
rely on inherently quantum features (no-cloning/monogamy of
correlations)
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Goal: a multi-round protocol which
@ has a rigorous security proof
@ can be implemented using currently available technology

@ can achieve commitment time longer than 42ms



How did it all start?

Goal: a multi-round protocol which
@ has a rigorous security proof
@ can be implemented using currently available technology
@ can achieve commitment time longer than 42ms

Our contributions:

@ Security of Simard's protocol against the most general
quantum attack

@ New multi-round protocol and a security proof against
classical adversaries

@ Experimental implementation of both schemes



Two-round protocol [Simard]
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a — private randomness of Alice
b — private randomness of Bob
a,beg{0,1}"



Two-round protocol [Simard]

Commit
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blthse AND XOR
0-b=0
1-b=0b

a — private randomness of Alice
b — private randomness of Bob
a,beg{0,1}"



Two-round protocol [Simard]

Commit Open
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0-b=0
1-b=b

a — private randomness of Alice
b — private randomness of Bob
a,beg{0,1}"
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Two-round protocol [Simard]

Commit Open
&' o d yg =a
/\ "
1}6 }/1 d-bda % E
blthse AND XOR accept iff yy @ y>=d- b
0-b=0
1-b=05b Security for honest Alice

guaranteed by the XOR
a — private randomness of Alice
b — private randomness of Bob Security for honest Bob
a,beg{0,1}" more complicated...
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beg {0,1}" der {0,1}
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Two-round protocol — honest Bob

beg {0,1}" der {0,1}
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win iff yy @y, =d-b



Two-round protocol — honest Bob

beg {0,1}" degr {0,1}

N
J g °
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win iff y; @ yo =d- b

Classically: pyin = % + =

Quantumly: pyin < 3 + % . \/%7 [Sikora, Chailloux, Kerenidis'14]



Two-round protocol — honest Bob

beg {0,1}" der {0,1}

N i /
] i ™

‘ " Y2
winiff yy @yo=d- b exponential decay
(tight) conjectured to be
Classically: pyin = 1 5+ 2—,, (essentially) tight

Quantumly: pyin < 3 % -[Sikora, Chailloux, Kerenidis'14]



Two-round protocol — honest Bob
beg {0,1}" i der {0,1}
S g %
Ay " ; M

P T a4

J i \

‘ Y2
winiff yy @yo=d- b exponential decay
(tight) conjectured to be
1

(essentially) tight
5 -[Sikora, Chailloux, Kerenidis'14]

Classically: pyin =

Quantumly: pyin < 2 +

quantum-classical gap
quantum adversary strictly more powerful
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ak, b €r {0,1}"
consecutive rounds must
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A new multi-round protocol

ak, b €r {0,1}"
consecutive rounds must

Commit  p, be space-like separated
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ak, b €r {0,1}"
consecutive rounds must
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A new multi-round protocol

ak, b €r {0,1}"
consecutive rounds must

Commit  p, be space-like separated
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A new multi-round protocol

ak, b €r {0,1}"
consecutive rounds must

Commit  p, be space-like separated

¥ = .
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84 =8
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. finite field multiplication
* . over GF(2")
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accept iff V(d, b1, y1,---, bm, Ym, Ym+1) =1



A new multi-round protocol

Commit p,

a4 vi—d b a S
L]
.
bm
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Ym = am—1%* bm@am

Security for honest Alice
guaranteed by the XOR

ak, bk €r {0,1}"
consecutive rounds must
be space-like separated
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A new multi-round protocol

ak, b €r {0,1}"
consecutive rounds must

Commit be space-like separated

A/\ ®
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. finite field multiplication
* . over GF(2")
bm .
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Ym = am—1%* bm ® am d7ym+1 am

/\ A
p &
Security for honest Alice 44 S
guaranteed by the XOR accept iff V(d, b1,¥1,-- -, bmy Yms Yms1) = 1

Security for honest Bob
more complicated...
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A new multi-round protocol — honest Bob
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A new multi-round protocol — honest Bob
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Quantumly: causal constraints make the analysis very hard...
Classically: shared randomness doesn’t help; deterministic strategies
“flatten” the causal structure to give a multi-prover model



A new multi-round protocol — honest Bob
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A new multi-round protocol — honest Bob

b, . bm_1,d
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A new multi-round protocol — honest Bob

received from received in

the past this round
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A new multi-round protocol — honest Bob

by, d
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A new multi-round protocol — honest Bob
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check whether V/(d, b1, y1, ..., bmy Ym, Ym+1) =1



A new multi-round protocol — honest Bob

bm_1 missing!

received in
this round

received from
the past

bll b2£d blatl)37d a
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N Y2 y3 Ym Ym+1

check whether V/(d, b1, y1, ..., bmy Ym, Ym+1) =1

this reduction is exact — same optimal winning probability



A new multi-round protocol — honest Bob

Conclusions:

@ End up with a complicated game of m+1
non-communicating players; exact cheating probability is
hard to calculate.

@ Can be relaxed to the problem of computing a certain function
in the “Number on the Forehead” model.

@ This class of problems is well-studied in computer science and
has profound implications. It is believed to be hard (which
would imply that cheating is difficult) but only weak bounds
are known.

e Equivalent to counting the number of zeroes of a certain
family of multivariate polynomial over finite field GF(2").



A new multi-round protocol — honest Bob

Final result: Security for honest Bob with & ~ 2-"/2".

@ Security deteriorates drastically as m increases.

@ Looks very similar to communication complexity lower
bounds for this model: Q(5%).

@ In principle, an arbitrary long commitment is possible (at the
price of very large n).

@ In practice, technology puts a limit on n so the commitment
time is limited.
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Multi-round experiment
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Multi-round experiment
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Multi-round experiment

Time ‘«
Couff { \\\
B N
d,aQ *1 \\\\
A]_ \\\\ P
\\ // }tbuff
\\\ /// Bl
,//"\\\ 21 bQ*al@aQ

0 ] Position



Security parameter

Two-rounds RBC Multi-rounds RBC

Provably secure against Provably secure against
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Security parameter

Two-rounds RBC

[Quantum adversary]
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Two-rounds RBC
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Internet

Time of day

Frequency synchronization .
Time for one round: ~ 6.1 us
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Timing matters: clock uncertainty

Synchronization between two GPS-clocks

150 |
120 |-

0 |

Count

60

30 |

Time (ns)

Clock uncertainty: 150 ns

Commitment time
between two rounds

| 437-6.1-0.15-t, . =400 ps X 5

2 ms of commitment
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Conclusions

* Bit commitment provably secure using only relativistic constraints
against quantum and classical adversary.

* Commitment time is not limited by the distance between the two
locations (against a classical adversary)

* Even if the multi-round bound allows to sustain only few rounds the
commitment, we can perform long commitment with a simple setup.
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Wednesday 11:30
Device-independent uncertainty for
binary observables

Jedrzej Kaniewski, et al.

54) [Area 3] Practical QKD over 307 Km,
Boris Korzh, et al.

71) [area 4] A Convenient Countermeasure against
Detector Blinding Attacks for Practical QKD,
Charles Ci Wen Lim, et al.
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Blinding Attacks for Practical QKD,
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