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What is the quantum set?
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Local-realistic theories give statistics of the form

P (a, b|x, y) =
∑
λ

p(λ) p(a|x, λ) p(b|y, λ).

P belongs to the local set: P ∈ L

Fact: L is a polytope: convex hull of a finite number of extreme
points

[Bell’64]: quantum correlations can be stronger!
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What is the quantum set?

The quantum set Q: P ∈ Q if there exist:
ρAB: bipartite state shared by the devices
Exa : measurement operator of Alice for outcome a on input x
F yb : measurement operator of Bob for outcome b on input y

such that
P (a, b|x, y) = tr

[
(Exa ⊗ F

y
b )ρAB

]
.

Note: Q is defined for a fixed number of inputs and outputs
(independent of the dimension of the state)

Fact: Q is convex and compact∗

How big can Q get?
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What is the quantum set?

Observation: Quantum mechanics is no-signalling∑
b

P (a, b|x, y) =
∑
b

P (a, b|x, y′) for all y, y′.

What if no-signalling was the only constraint on the probabilities?

[Popescu, Rohrlich’94]: correlations would be even stronger, define
the no-signalling set NS as

P ∈ NS if P (a, b|x, y) ≥ 0 and obey no-signalling

Fact: NS is a polytope (finite number of linear inequalities)
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Given some Bell violation

β =
∑
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cxyabP (a, b|x, y)

arising from measuring a quantum system
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]
deduce properties of ρAB, (Exa ), (F yb ).

Sounds challenging, but in some cases we can deduce essentially
everything!
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The maximal CHSH violation β = 2
√

2 implies. . .

ρAB ' ΦAB,

where ΦAB = EPR pair and

A0 ' σx, A1 ' σz,
B0 ' σx, B1 ' σz.

“complete rigidity statement”
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(1)
maximal violation picks a
single point P ∈ Q

(2) P has an (essentially) unique
quantum realisation

Question: how generic is this situation?

Answer: already in the simplest Bell scenario (2 inputs, 2 outputs)
things can get much more complicated. . .



What is self-testing?

-� -� � � �

-�

-�

�

�

�

-〈����〉+ 〈����〉+ 〈����〉+ 〈����〉

〈�
�
�
�
〉
+
〈�

�
�
�
〉
+
〈�

�
�
�
〉
-
〈�

�
�
�
〉

�����

���

�����

���������� ��

(1)
maximal violation picks a
single point P ∈ Q

(2) P has an (essentially) unique
quantum realisation

Question: how generic is this situation?

Answer: already in the simplest Bell scenario (2 inputs, 2 outputs)
things can get much more complicated. . .



What is self-testing?

-� -� � � �

-�

-�

�

�

�

-〈����〉+ 〈����〉+ 〈����〉+ 〈����〉

〈�
�
�
�
〉
+
〈�

�
�
�
〉
+
〈�

�
�
�
〉
-
〈�

�
�
�
〉

�����

���

�����

���������� ��

(1)
maximal violation picks a
single point P ∈ Q

(2) P has an (essentially) unique
quantum realisation

Question: how generic is this situation?

Answer: already in the simplest Bell scenario (2 inputs, 2 outputs)
things can get much more complicated. . .



What is self-testing?

-� -� � � �

-�

-�

�

�

�

-〈����〉+ 〈����〉+ 〈����〉+ 〈����〉

〈�
�
�
�
〉
+
〈�

�
�
�
〉
+
〈�

�
�
�
〉
-
〈�

�
�
�
〉

�����

���

�����

���������� ��

(1)
maximal violation picks a
single point P ∈ Q

(2) P has an (essentially) unique
quantum realisation

Question: how generic is this situation?

Answer: already in the simplest Bell scenario (2 inputs, 2 outputs)
things can get much more complicated. . .



Outline

What is the quantum set?
What is self-testing?
Unusual geometric features of the (bipartite) quantum set
Tripartite scenarios
Summary and open problems



Unusual geometric features of the quantum set

The quantum set is “round”,
i.e. it does not have any flat
regions on the boundary
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the right Bell function

since βQ = βL =⇒
no consequences for self-testing
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Every Bell function with βQ > βL
has a unique maximiser
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Counterintuitive features of the quantum set

Example in the 3 input, 2 output scenario: take the I3322 function and
remove the marginals
=⇒ Bell function B s.t. βL = 4, βQ = 5, βNS = 8

β = 5

β = 4

entire segment can be realised
by projective measurements
on (|00〉+ |11〉)/

√
2

β = 5 will not certify
observables, but might be
sufficient to certify the state
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extremal (self-test)
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approaches PHardy

but if we try to take the limit,
the coefficients diverge

precisely what one would
expect from an extremal
but not exposed point
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Tripartite scenarios

x

a

y

b

want to satisfy:
a⊕ b = x · y

optimal violation certifies
(|0〉A|0〉B + |1〉A|1〉B)/

√
2

c

want to satisfy:
a⊕ b⊕ c = x · y

What P (a, b, c|x, y) achieve the quantum bound of 2
√

2?

(1) Alice and Bob win CHSH optimally, Charlie outputs c = 0

(2) Alice and Bob lose CHSH optimally, Charlie outputs c = 1

Proposition: if P (a, b, c|x, y) ∈ Q saturates the quantum bound,
then P is a convex combination of (1) and (2)

=⇒ the quantum face is a line!

What about self-testing?

(i) grouping Bob and Charlie gives back the CHSH function
=⇒ we must have (|0〉A|0〉BC + |1〉A|1〉BC)/

√
2, but not clear how

it is split between Bob and Charlie. . .

(ii) the 2 extremal points certify (|0〉A|0〉B + |1〉A|1〉B)/
√

2

(iii) interior points can be achieved as convex combinations
of bipartite entanglement, but also from a GHZ state
(|0〉A|0〉B|0〉C + |1〉A|1〉B|1〉C)/

√
2
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Tripartite scenarios

x

a
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c

want to satisfy:
a⊕ b⊕ c = x · y

(facet Bell inequality)

Bob and Charlie can non-trivially “share” the CHSH violation. . .

Quantum face is the convex hull of a circle and 8 points

Self-testing???
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Summary and open questions

Summary:
Q has flat boundary regions: both local/nonlocal and purely
nonlocal

Q has extremal points which are not exposed
This limits our ability to make self-testing statements
(particularly in the multipartite case)

Open questions:
Are there extremal points of Q which are not self-tests?
What happens for a generic (chosen at random) Bell
function/quantum face?
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So the quantum set really
has points which are

extremal but not exposed? Yes, Pooh, quantum
mechanics is very strange and

nobody really understands it, but
let’s talk about it another day. . .


