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Bit commitment – the primitive

Commit phase: Bob commits a bit to Alice.
Open phase: Bob opens his commitment and Alice accepts (or
not).

The protocol should be:

correct: If Alice and Bob are honest then Alice always
accepts the opening.
binding: If Alice is honest then there is at most one bit
that Bob can successfully open.
hiding: If Bob is honest then Alice learns nothing about
his commitment until the open phase.
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Bit commitment – the no-go

Quantum mechanics does not allow for a bit commitment
that gives perfect (or close to perfect) security to both
parties [Lo,Chau’96; Mayers’96].
There exist protocols that give partial security to both
parties, the trade-offs are known [Spekkens,Rudolph’01;
Chailloux,Kerenidis’11].
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There exist protocols that give partial security to both
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Relativistic Bit Commitment

Communication constraints can be 
enforced by special relativity

By imposing communication constraints 
one can evade the no-go



Relativistic bit commitment protocols

1 Unconditionally Secure Bit Commitment
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2 Secure Classical Bit Commitment Using Fixed Capacity
Communication Channels
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3 Unconditionally Secure Bit Commitment with Flying
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4 Unconditionally Secure Bit Commitment by Transmitting
Measurement Outcomes
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Relativistic bit commitment protocols

1 Unconditionally Secure Bit Commitment
A. Kent, Phys. Rev. Lett. 83, 1447 (1999)

2 Secure Classical Bit Commitment Using Fixed Capacity
Communication Channels
A. Kent, Journal of Cryptology 18, 313 (2005)

3 Unconditionally Secure Bit Commitment with Flying
Qudits
A. Kent, New Journal of Physics 13, 113015 (2011)

4 Unconditionally Secure Bit Commitment by Transmitting
Measurement Outcomes
A. Kent, Phys. Rev. Lett. 109, 130501 (2012)



Relativistic bit commitment protocols

1 Unconditionally Secure Bit Commitment
A. Kent, Phys. Rev. Lett. 83, 1447 (1999)

2 Secure Classical Bit Commitment Using Fixed Capacity
Communication Channels
A. Kent, Journal of Cryptology 18, 313 (2005)

3 Unconditionally Secure Bit Commitment with Flying
Qudits
A. Kent, New Journal of Physics 13, 113015 (2011)

4 Unconditionally Secure Bit Commitment by Transmitting
Measurement Outcomes
A. Kent, Phys. Rev. Lett. 109, 130501 (2012)



Relativistic bit commitment protocols

1 Unconditionally Secure Bit Commitment
A. Kent, Phys. Rev. Lett. 83, 1447 (1999)

2 Secure Classical Bit Commitment Using Fixed Capacity
Communication Channels
A. Kent, Journal of Cryptology 18, 313 (2005)

3 Unconditionally Secure Bit Commitment with Flying
Qudits
A. Kent, New Journal of Physics 13, 113015 (2011)

4 Unconditionally Secure Bit Commitment by Transmitting
Measurement Outcomes
A. Kent, Phys. Rev. Lett. 109, 130501 (2012)



BC by Transmitting Measurement Outcomes

1 (commit) Alice generates n random BB84 states and
(simultaneously) sends them to Bob.

2 To commit to 0 (1) he measures all the incoming qubits
in the computational (Hadamard) basis. Bob distributes
the outcomes to agents occupying distant locations.

3 (open) Bob’s agents have to simultaneously unveil the
commited bit and the measurement outcomes to Alice’s
agents.

4 (verify) Alice’s agents verify whether the outcomes
provided by Bob are consistent with the BB84 states.
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Proven secure in
[S. Croke and A. Kent, Phys. Rev. A 86, 052309 (2012),
J. Kaniewski, M. Tomamichel, E. Hanggi, and S. Wehner,
Information Theory, IEEE Transactions on 59, 4687 (2013)]
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Security

Proven secure in
[S. Croke and A. Kent, Phys. Rev. A 86, 052309 (2012),
J. Kaniewski, M. Tomamichel, E. Hanggi, and S. Wehner,
Information Theory, IEEE Transactions on 59, 4687 (2013)]

Secure you say, mhhmmmm, but what’s the security model?

not possible classically 
[quantum advantage]

Commit phase Open phase

Alice Bob Alice
Bob1

Bob2



Relativistic realisation
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Implementation issues

Source: We do not use a single photon source. We use a
weak coherent source with phase randomisation:

⇢ =
1X

r=0

pr |rihr |,

where pr = e�µ · µ
r

r !
,

µ is the average number of photons per pulse and |ri is the
Fock state of r photons.

Channel and Bob’s detectors: They are not perfect. They
introduce bit-flip errors and losses.
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A fault-tolerant protocol

1 (commit) Alice generates n pulses of random BB84 states
and sends them to Bob.

2 To commit to 0 (1) he measures all the incoming qubits
in the computational (Hadamard) basis. Bob distributes
the outcomes to agents occupying distant locations. Bob
tells Alice which photons he received. Alice accepts if the
losses are below a specific threshold. All the other rounds
are discarded.

3 (open) Bob’s agents have to simultaneously unveil the
commited bit and the measurement outcomes to Alice’s
agents.

4 (verify) Alice’s agents verify whether the outcomes
provided by Bob are consistent with the BB84 states up
to a certain number of errors.
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A fault-tolerant protocol - Security

One-commitment steps (honest execution):

• Alice sends N pulses, Bob reports detecting n of them
• Let

• After Bob revealed the commitment, Alice calculates the
QBER:

• Security is possible only if

• Calculate the security parameter from the finite stats

Number of detections with same basis 
for preparation and measurement

Number of errors within n’

N

n

n’

nerr

� ⇡ 14.6%
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Feasibility plot
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There has to be
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(very hard for 
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Y. Liu, Y. Cao, M. Curty et al. arXiv:1306.4413 

http://arxiv.org/find/quant-ph/1/au:+Liu_Y/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Liu_Y/0/1/0/all/0/1
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The classical agents : timing performances
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Other tests showed that
• B1 and B2 are in sync to within 100 ns
• Synchronization is maintained over 

the 15 ms of the protocol
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The quantum boxes (Geneva) : performances
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The quantum boxes (Geneva) : performances

Stability of the detection probability : Bob must monitor!

Basis detection probability
mismatch: side-channel!

Software bias elimination.
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Summary and outlook

• First implementation of bit commitment using quantum 
communication and special relativity

• Closing on the maximum commitment time allowed on the 
surface of the Earth

• Possible extensions for sustained commitments with 
constant communication at each round? (Kent’05)


