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Abstract

Quantum information theory is a rapidly growing field that harnesses the power of
microscopic physical systems in information theoretical tasks. Some of its predictions
could have a tremendous impact on near-term information technology, such as exponential
speedup in computational tasks or unconditionally secure cryptographic protocols. These
perspectives are highly promising, however, they call for verification schemes: one must be
able to certify the correctness of quantum computations, as well as to verify the security
of cryptographic devices.

While such verification schemes already exist, and are thoroughly studied, there are
still a few drawbacks associated with them. The most rigorous certification scheme of
“self-testing” is rather difficult to implement in the laboratory, and results in the high-
dimensional setting are lacking, despite the apparent advantage of high-dimensional sys-
tems. Moreover, most verification methods focus on certifying the exact physical setup
rather than some relevant properties thereof, which is impractical in some cases.

In the current thesis, I address the above shortcomings by devising experimentally
friendly certification schemes of relevant properties in the high-dimensional setting. Specifi-
cally, I focus on the experimentally less demanding task of “prepare-and-measure” scenarios,
in which, together with my collaborators, I introduce two methods of certifying quantum
states and measurements. The first method concentrates on verifying the genuine high-
dimensional nature of quantum states and measurements, a property that we refer to as
‘irreducible high-dimensional systems’. Together with my collaborators, we demonstrate
the applicability of our methods in a photonic experiment in dimension 1024, proving the
irreducibility of the implemented quantum optical setup.

My second method uses the same prepare-and-measure protocol, however, this time I
concentrate on certifying a class of measurements that has proven to be immensely useful
in quantum information theory, mutually unbiased bases. Together with my collaborator,
we show that these measurements can be certified in the prepare-and-measure scenario
in an experimentally feasible manner. Moreover, using our results, we are able to cer-
tify two additional properties of the measurements, namely their capability of generating
randomness, and their incompatibility robustness.

Finally, I focus on the above mentioned relevant property of measurements, incom-
patibility robustness, which measures to what extent a pair of quantum measurements is
not jointly measurable. Incompatible measurements turn out to be a useful resource in

various quantum information theoretic protocols, and therefore it is an important task to
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quantify the extent to which a pair of measurements is incompatible. Together with my
collaborators, we analyse a wide class of incompatibility robustness measures, correspond-
ing to generic noise models. We show that some of the measures that are often used in
the literature do not satisfy certain natural properties. Moreover, we show that according
to one of the measures, mutually unbiased bases are among the most incompatible pairs
of measurements in every dimension, but also that this is not the case for some other
measures. Our results highlight that despite the significant effort dedicated to this topic,
a thorough understanding of incompatibility robustness measures is still lacking in the

quantum information community.
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Streszczenie

Teoria informacji kwantowej jest aktywnym kierunkiem badawczym, ktorego celem jest
wykorzystanie mikroskopowych uktadoéw fizycznych do zadan zwigzanych z przetwarzaniem
informacji.  Niektéore odkrycia na tym polu moga mie¢ w niedalekiej przyszlosci
ogromny wptyw na technologie zwiazane z przetwarzaniem informacji, np. eksponencjalne
przyspieszenie w zadaniach obliczeniowych lub bezwarunkowo bezpieczne protokoty kryp-
tograficzne. Te perspektywy sa obiecujace, ale aby je osiagnaé, potrzebne sa odpowiednie
procedury weryfikacji: musimy by¢ w stanie potwierdzi¢, ze obliczenia kwantowe dokony-
wane sa w sposob poprawny lub ze implementacja protokotu kryptograficznego jest bez-
pieczna.

Procedury tego typu juz istnieja, ale mimo intensywnych badari nie spelniaja one
jeszcze wszystkich wymagan. Najbardziej rygorystyczna metoda certyfikacji, zwana
“samotestowaniem”, jest trudna do implementacji w eksperymencie. Ponadto istnieje
niewiele wynikéow, ktére mozna zastosowaé¢ do ukladéw wysokowymiarowych, mimo ze
uktady te sa przydatne w wielu naturalnych zadaniach. Poza tym wiekszosé istniejacych
metod skupia sie na certyfikacji catego uktady fizycznego, a nie na konkretnych pozadanych
wtasnosciach, co w niektorych przypadkach jest niepraktyczne.

W ramach mojej pracy doktorskiej proponuje nowe i przyjazne z eksperymentalnego
punktu widzenia procedury certyfikacji konkretnych istotnych cech uktadéw wysokowymi-
arowych. W scenariuszu “przygotuj-i-zmierz”, ktory jest mniej wymagajacy z eksperymen-
talnego punktu widzenia, wraz ze swoimi wspotpracownikami proponuje dwie metody cer-
tyfikacji stanéw i pomiaréw kwantowych. Pierwsza metoda pozwala weryfikowaé prawdzi-
wie wysokowymiarowa nature stanu i pomiaréw kwantowych, co nazywamy “nieredukowal-
noscia” uktadu. Wraz ze wspolpracownikami zastosowaliémy te metode do fotonicznego
eksperymentu w wymiarze 1024, gdzie pokazalismy, ze kwantowo-optyczny uktad zaimple-
mentowany w eksperymencie jest nieredukowalny.

Druga metoda uzywa tego samego protokotu w scenariuszu “przygotuj-i-zmierz”, ale tym
razem skupiam sie na certyfikowaniu pewnej klasy pomiaréw, ktore sa niezwykle uzyteczne
w teorii informacji kwantowej: baz wzajemnie nieobciazonych. Wraz ze wspotpracownikiem
pokazalismy, ze te pomiary moga by¢ certyfikowane w scenariuszu “przygotuj-i-zmierz”’ w
warunkach realistycznych z eksperymentalnego punktu widzenia. Ponadto byliémy w stanie
certyfikowaé¢ dwie dodatkowe wtasnosci pomiaréw: ich zdolno$é do generowania losowosci
i niekompatybilnos¢.

W ostatniej czesci skupiam si¢ na niekompatybilnoéci pomiaréw, a konkretniej na mi-
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arach opartych na odpornos$¢ na szum, ktére kwantyfikuja w jakim stopniu dwa pomiary
sg niekompatybilne. Zrozumienie tych miar jest wazne, gdyz niekompatybilne pomiary
sa uzytecznym zasobem w wielu kwantowych protokotach. Wraz ze wspoétpracownikami
zanalizowaliSmy szeroks game miar niekompatybilnosci, ktére odpowiadaja naturalnym
modelom szumu. Pokazaliémy, ze niektére z miar, ktore sa czesto uzywane w literaturze,
nie spetniaja pewnych naturalnych wymogéw. Ponadto pokazaliSsmy, ze wedtug jednej z
miar bazy wzajemnie nieobcigzone znajduja sie wéréd najbardziej niekompatybilnych po-
miaréw (w kazdym wymiarze), ale to stwierdzenie nie jest prawda dla innych miar. Nasze
wyniki pokazuja, ze mimo pokaznego wysitku badawczego w tej tematyce, nasze zrozumie-

nie miar niekompatybilnosci pomiaréw wciaz jest niepetne.
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Part I

Summary of PhD Dissertation

I. INTRODUCTION

The main objective of physics (and of any natural science) is to describe and predict
phenomena that occur in the world that surrounds us. Why does the Sun rise and set
at a particular position? Why do certain objects — let them be enormous, like a star, or
minuscule, like an atom — attract each other? How can we use these observations to design
new tools that facilitate our everyday lives?

In the last few centuries — which have seen an unprecedented progress of human well-
being — the first and foremost tool for answering such questions has been to devise math-
ematical models. Such models provide a universal language in which descriptions and
predictions can be formulated, and they work incredibly well with the other cornerstone
of science: experiments. The axiomatic structure of mathematics makes it possible for
mathematical models to precisely prescribe an experiment, and to describe its outcome in
an unequivocal manner. This also implies that theories based on mathematical models can
be tested: in case experiments confirm their predictions, they are temporarily admitted.
However, this status never lasts forever — whenever an experiment contradicts with its
predictions, the theory should be refined, its applicability should be restricted, or, in the
most extreme case, it should be completely dismissed. This tedious and never-ending trial
and error process is how science has always been advancing.

About a hundred years ago, an extremely successful physical theory started to emerge:
quantum theory aims at describing and predicting the behaviour of microscopic physical
systems, and it does so with outstanding precision. As an example, one of the predictions
of quantum electrodynamics is the slight deviation of the electron magnetic moment from
the value § = 1 predicted by standard relativistic quantum mechanics. This deviation was
recently measured experimentally to take the value § = 1.00115965218085(76), a precision
of 14 digits (11, if considering the deviation only) [OHDGO06|. With experiments like this,
quantum theory is arguably one of the most thoroughly tested physical theories, and it has
been holding up to scrutiny incredibly well for the last century.

This extreme precision comes at a somewhat unexpected cost: in many cases, the
predictions of quantum theory are in stark contrast with our everyday intuitions. Most

notably, Einstein, Podolsky and Rosen pointed out in 1935 [EPR35|, and later Bell for-
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malised in 1964 [Bel64], that the predictions of quantum theory cannot be explained by any
local realistic theory. What this means is that if the predictions of quantum theory are
correct, then we cannot think of physical systems as having pre-defined (real) properties in
confined (local) regions of space, and of measurements as simply revealing these properties
to us.

Finstein, Podolsky, Rosen and Bell proposed an experiment in which two particles are
sent to two distant laboratories. In each of the laboratories, the experimenters simul-
taneously perform a measurement on their particle, and note down the outcome of this
measurement. They repeat this procedure many times with new particles, in each round
possibly choosing different measurements. Since the laboratories are far away, and the
measurements only take a short time, the experimenters cannot communicate during in-
dividual rounds. After many rounds, the experimenters gather their respective outcome
statistics and meet to look at the statistics of the whole experiment. Astoundingly, ac-
cording to quantum theory, in some cases they might find that these statistics cannot be
explained by local realism. That is, if the experimenters were to assume that their respec-
tive particles had some well-defined properties (possibly different ones in each round) which
the measurements could read out, they would be unable to reconstruct their experimental
data. Crucially, such experiments have recently been performed in so-called loophole-free
Bell tests [HBD 15, GVW 15, SMSCT15]. The results confirm with very high fidelity
that the predictions of quantum theory are indeed correct, and Nature cannot be modelled
in a local realistic manner.

A rapidly developing field that harnesses such extraordinary feats of quantum theory is
quantum information theory. It studies the power of microscopic particles in information
theoretical tasks, such as computation or communication. Exploiting phenomena that can-
not be explained in any classical (local realistic) theory, the relatively new field of quantum
information theory has already led to promising, and potentially paradigm-shifting results.
Some of them give us the prospect of performing computational tasks — such as factorising
astronomically large numbers [Sho94|, or simulating molecules consisting of a huge num-
ber of atoms |Fey82] — that are unfathomable with currently available computers. Other
results open up the possibility of designing communication devices that are unhackable by
any agent that is restricted by quantum theory [BB84, Eke91].

While these prognoses are immensely impressive, it is apparent that they call for ver-
ification schemes. How can we be sure that a quantum computation provides the right

answer, if there is no way to reproduce it on a classical computer? How do we certify that
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the “secure” communication device — potentially obtained from an untrusted party — is not
leaking any information to adversaries? Can an everyday user confirm these vital claims
without having to understand all the intricacies of quantum theory and without having to
track down the movement of every individual atom?

Somewhat fortunately, Bell’s results also provide a way for a purely classical user to
certify quantum devices in so-called self-testing scenarios [MY98, MY04, MMMOO6]. In
some Bell-type experiments, the experimenters are able to characterise their devices up
to the minimal freedom that is allowed within quantum information theory. Importantly,
there are also robust self-testing results [BLM 09, MYS12, YVB*14, BNST15], that allow
for an approximate characterisation in imperfect experimental realisations [TWE™17]. This
makes making self-testing statements applicable in real-world scenarios, such as quantum
computing or cryptography.

Self-testing results are extremely powerful, however, this power comes with a few draw-
backs. First of all, these experiments are exceptionally difficult to implement in the labora-
tory — notice the time difference between Bell’s theorem in 1964, and the first loophole-free
Bell test in 2015: more than 50 years! Second of all, the rigid self-testing statements are
not always practical: in many cases, the users might not be interested in certifying their
devices up to the minimum theoretically allowed freedom, but would rather certify certain
relevant properties of the physical systems and measurements. Lastly, deriving self-testing
statements for systems with dimension (number of degrees of freedom) larger than two
is also difficult theoretically, which is apparent from the lack of results in the scientific
literature. On the other hand, current technology and experiments have entered a stage
when they can prepare and measure high-dimensional quantum systems reliably with high
precision [DLB*11, FLP ™12, MMZ16]. Such high-dimensional systems have a provable ad-
vantage regarding noise tolerance [HP13], and their use seems inevitable if we are aiming
to increase the communication capacity of existing devices, such as optical fibres [RFN13].
Therefore, in summary, new, experimentally friendly verification schemes are needed, that
certify relevant properties even in the high-dimensional regime.

One example of a relevant property of quantum measurements, that also turns out to
be essential for Bell-type experiments, is measurement incompatibility [Lud54, BLPY16].
This is yet another counter-intuitive quantum phenomenon: Some measurements cannot
be performed simultaneously on a single copy of the physical state. That is, sometimes
we cannot learn two different properties of a single physical system. Such measurements

are called incompatible, and they turn out to be a useful resource in Bell-type experiments
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[WPGF09|, for the so-called Einstein-Podolsky-Rosen steering [QVB14, UBGP15| and
state discrimination tasks [CHT19]. Therefore, it is desirable to characterise to what
extent certain measurements are incompatible. Such measures of incompatibility are often
studied in the literature [HMZ16|, however, their properties and the relations between
them are not well-understood.

In the present thesis, together with my collaborators, I address the above mentioned

shortcomings in the following ways:

e [ develop experimentally friendly certification schemes for quantum states and mea-
surements, and I work together with an experimental team to demonstrate that these

methods are applicable with currently available technologies.

e [ develop methods that certify relevant properties of quantum states and measure-

ments, instead of the usual rigid self-testing statements.

e My results are valid for arbitrary dimensions, surpassing most known results that

only apply to dimension two.

e [ analyse a wide class of incompatibility measures. I derive universal bounds on them
and show that some widely used measures do not certify certain natural properties.
I also show that what constitutes the most incompatible measurement pair depends

on which measure we choose.

The remainder of this summary is organised as follows: In section II, I formally in-
troduce the relevant notions, that is, the quantum formalism, certification schemes, and
measurement incompatibility. Then, in section III, I summarise the findings of the papers
that constitute the core material of this thesis, and that are attached to this summary in
their full extent. Lastly, in section IV, I outline some potential further research directions

emerging from the works that are introduced in section III and in the attachments.
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II. PRELIMINARIES

A. Quantum formalism

In this section I briefly introduce a few basic notions from quantum theory, that will
allow me to introduce different certification schemes and the notion of measurement in-

compatibility in the later sections.

1. Quantum states and measurements

Quantum information theory treats physical systems as information carriers, and mea-
surements as means of accessing the information that is encoded in the systems. This
allows for a very generic description of quantum states and measurements: If the informa-
tion content of two systems are the same, then their descriptions are also the same. For
example, the quantum analogue of a bit, called a qubit, can be realised in physically very
different ways (e.g. encoded in two possible paths of a photon [CY95], or in two isolated
low-energy states of a trapped ion [CZ95]). However, as long as their information content
is the same, quantum information theory describes them in exactly the same mathematical
manner, and it is not concerned about the details of the physical implementation.

What quantum information theory ¢s concerned about, is measurement statistics. That
is, given a physical system and a measurement, what are the probabilities of the different
measurement outcomes, without referring to the physical meaning of these outcomes. Con-
sider for example the following two experiments: (i) we prepare a photon, send it through
a beam splitter that either transmits or reflects the photon, and place a photodetector
behind the beam splitter, and (ii) we prepare a trapped ion in one of its two lowest energy
states, and measure its energy. As long as we get the same probabilities for the outcomes,
say, “photon detected” and “lowest energy”, and also for “no photon detected” and “second
lowest energy”, these two experiments are described by the exact same model in quan-
tum information theory. Therefore, in the following we adapt the most general definitions
of quantum states and measurements that allow us to consistently define measurement
outcome probabilities.

The state space describes all the possible states a physical system might occupy. Not
all of these different states need to be perfectly distinguishable, and in order to be able to
measure distinguishability, we identify the state space with an inner product vector space.
The inner product of two states, (|¢), is related to their distinguishability: if (¢|¢) = 0,
then the states |1)) and |¢) are perfectly distinguishable. On the other hand, if |p) = alt),
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that is, the state vectors are aligned, then they are indistinguishable. Therefore, we identify
|¢) with all states of the form «f¢), and pick a representative of this class such that
(¥|¢) = 1. The distinguishability D(1|¢) of two states then corresponds to

D(¢lp) = 1= [(¢lo)| € [0,1]. (1)

If D(v|¢) = 0, then ¢ and ¢ are indistinguishable, whereas if D(¢|¢) = 1, then they are
perfectly distinguishable. Therefore, to describe the state space, we need an inner product
vector space that has the same number of perfectly distinguishable (i.e. orthogonal) ele-
ments as the number of perfectly distinguishable possible physical states. In any quantum
theory — let it be quantum electrodynamics or quantum information theory — to every

physical system, we assign a Hilbert space:

Definition I1.1. A Hilbert space H is a linear space over the field C of complex numbers,
with an inner product (.|.), such that all Cauchy series are convergent under the norm

induced by this inner product.
Physical states then correspond to normalised elements of this Hilbert space:
Definition I1.2. A physical state is described by |¢) € H, such that (|) = 1.

It is clear then that the dimension of the Hilbert space corresponds to the number
of perfectly distinguishable quantum states. The historic example of this mathematical

construction is Schrodinger’s model of a particle moving in one dimension [Sch26]:

Example I1.3. The relevant Hilbert space for a particle moving in one dimension is H =

L?(R), the space of square-integrable complex functions on R.

e The inner product of Y(z) € H and p(z) € H is defined as
B@le@) = [ Sl )
e States correspond to unit norm elements of the Hilbert space, (x) € H, such that
[ daptaae =1 )
e The probability of finding a state ¥ (x) in the region S C R is

/ Ba)p(x)da. (4)
S
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Notice that the normalisation (¢|¢)) = 1 corresponds to the fact that the particle is
found somewhere with probability 1. It is also worth noting that the choice of this Hilbert
space is not arbitrary: every Hilbert space that has the same dimension as the cardinality
of R is isometric to L?(R) [Con94].

In the above framework, an experimenter might be able to prepare infinitely many
perfectly distinguishable states, localised at different points x on the real line R. Setting
aside the fundamental ambiguities of this possibility, the practicality of preparing infinitely
many perfectly distinguishable states is severely limited. Especially if the aim — as in
quantum information theory — is to encode a message in a state, or to use it to perform
some computation, as practical messages and computations are always finite. The number
of perfectly distinguishable states corresponds precisely to the Hilbert space dimension,
and therefore in the following we will focus solely on finite-dimensional Hilbert spaces.
Again, there is a canonical choice of the Hilbert space for every fixed finite dimension

[Con94]:

Theorem I1.4. Fvery d-dimensional Hilbert space H is isometric to C%, the space of

d-dimensional complex vectors, with the usual scalar product.

Therefore, d-dimensional quantum states correspond to d-dimensional complex vectors.
One might think of an abstract state [¢)) € C¢ as an information theoretical resource,
capable of encoding d perfectly distinguishable messages. Let us take the example of
a photon passing through a beam splitter. A beam splitter transmits the photon with
probability p (the transmittance), and reflects it with probability 1 — p. Let us denote the
transmittance path by “T” and the reflection path by “R”. Also let us denote the state
of a transmitted photon by |T'), and the state of a reflected photon by |R). If our beam
splitter transmits every photon (p = 1), then the photon will occupy the state |T') in all
cases, which can be certified by placing a detector behind the beam splitter (into the path
“T”). Indeed, in an ideal experiment this detector will always detect a photon. On the
other hand, if our beam splitter reflects every photon (p = 0), then the photon will occupy
the state |R) in all cases, and the above detector will never detect a photon. That is, the
states |T') and |R) are perfectly distinguishable (distinguishable with probability 1) using
a detector placed behind the beam splitter. Note, however, that for any other value of
the transmittance, p € (0, 1), the resulting state will not be perfectly distinguishable from
either the state |T') or |R), as the detector will detect a photon with probability p. This
means that the probability of distinguishing this state from, say, |R) is p < 1. Having two

(and no more) possible perfectly distinguishable states in this experiment, this photonic
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state can be described by a two-dimensional Hilbert space:

Example I1.5. The state of a photon passing through a beam splitter can be described by
a vector [¢) € C2. If we define an orthonormal basis {|T),|R)} on C2, then any such state

can be written as

W) = ar|T) + agr|R), (@) = lar|* + |agl* = 1. (5)

1

For example, a photon passing through a beam splitter with transmittance 5 can be described

as [v) = Z5(IT) + |R)).

The above construction — a two-dimensional quantum system — is called a qubit, and it
is one of the fundamental building blocks of quantum information theory. One can think
of a qubit as the quantum equivalent of a bit, which is the fundamental unit of information
in classical information theory. A qubit can encode two perfectly distinguishable messages
(for example, |T') and |R)), just like a classical bit, but also any combination of these
messages of the form in Eq. (5). On the other hand, a classical bit takes either the value
“0” or “1”. It is therefore apparent that the information theoretical potential of a qubit
might supersede that of a classical bit.

How do we extract the encoded information from a quantum state? We have already
seen an example above, using a photodetector. Putting the detector behind the beam
splitter is equivalent to asking the question “is the photon transmitted?”. The answer to
this question is “yes” (alternatively “T") if we detect a photon, or “no” (alternatively “R”,
because in this case we assume that the photon is reflected) if we do not detect any photons.
That is, we extract some information encoded in the path degree of freedom of the photon.

The above scheme is an example of a quantum measurement, which is the most general
way of retrieving information from a quantum state. Physically it corresponds to measur-
ing some property of the system (e.g. its position), and the answer carries some physical
meaning (e.g. “in the transmittance path” or “in the reflection path”). In quantum infor-
mation theory, on the other hand, we are only interested in the probability with which
the different outcomes occur. It is therefore of little relevance how we label the outcomes,
and it is convenient to call for example the outcomes “T” and “R” simply “0” and “1”,
analogously to a classical bit. Again, in practical scenarios, it is reasonable to assume that
an experimenter has only access to measurements with finitely many possible outcomes.
Therefore, mathematically a finite-outcome measurement is a linear map that takes any
quantum state, and maps it to a discrete probability distribution, corresponding to the
outcome probabilities. The most general way to define such a map is a positive-operator

valued measure (POVM):
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Definition I1.6. A finite-outcome quantum measurement corresponds to a finite-outcome
positive-operator valued measure (POVM). A POVM with n outcomes defined on the
Hilbert space H is a set of n operators, {My}l'_, from the set of bounded operators B(H)
on H, such that

n
M, >0, ZMazﬂ, (6)
a=1

where 1 is the identity operator on H and M, > 0 means that M, is positive semidefinite.
The operators M, are called POVM elements, measurement operators or effects.
Given a state 1)) € H, the probability of outcome “a” upon measuring M on the state |1))

1s given by the Born rule:

pa)y = (Y[ Mal9). (7)

It is clear that {p(a)y}i—; is indeed a probability distribution for every |¢) € H, that
is, from Eqgs. (6) and (7) it follows that

pla)y >0 VYa=1,...,n, Zp(a)wzl V|Y) € H. (8)
a=1

The above example of measuring whether a photon is transmitted through a beam splitter

can also be formulated as a POVM:

Example I1.7. Measuring whether a photon is transmitted through a beam splitter corre-

sponds to the POVM

UTHT, [R)(RI} (9)

on the Hilbert space C2, where |T)(T| (|R)(R|) is the rank-1 projection onto the vector |T)

(|R)). That is, given a two-path photon state
[¥) = ar|T) + BIR),  |ar* + |ar* =1, (10)
the probability of obtaining the answer “I'” is
p(T)y = (ITYT ) = lar|*, (11)
and the probability of obtaining the answer “R” is
P(R)y = (VIR)(RI¢) = |ar|*. (12)

The above is also an example of an important class of measurements, projective mea-

surements.
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Definition I1.8. A POVM {P,}"_, is a projective measurement if P? = P, for all

a=1,...,n.

While POV Ms are the most general definition of quantum measurements, the definition
of quantum states in Definition 1.2 can still be generalised. First, notice that the outcome
probabilities in Eq. (7) do not change if we multiply the state |1)) with a complex number
of modulus 1 (a phase factor). Therefore, it is convenient to identify the state [¢)) with the
rank-1 projector |¢) (1| projecting onto |¢), which is invariant under the multiplication of

|v) with a phase factor. Then, the Born rule in Eq. (7) can be written as

pla)y = tr([¢) (Y[ Ma), (13)

which is now linear in the state [¢) (¢»|. This allows for the proper treatment of the following
state preparation scenario: Imagine that the experimenter has access to two devices, one of
them preparing the state |11) (1], while the other one preparing |¢9)(1)2|. Let us assume
that the experimenter first flips a biased coin, which gives “heads” with probability ¢, and
then, based on the outcome of the coin-flip, prepares the state [11) (1| or |1e)(t)e|. If
we regard the experimenter, the two preparation devices and the coin as one big state

preparation device, then the output of this device is

p = qlb1) (1] + (1 = @)[h2)(¥o], ¢ €[0,1], (14)

a convexr combination of the states [11) (11| and |[¢9)(1)9]. It is easy to see that the outcome

probabilities of any measurement M on this state are

p(a)p =q- p(a)lm + (1 - CI) 'p(a)qu, (15)

which still defines a probability distribution. Since we have just given an algorithm for
its preparation, p is still a physical state, and therefore we should allow for such convex
combinations in our theory. Therefore, the most general model for a quantum state is the

so-called density operator:

Definition I1.9. The set of quantum states on the Hilbert space H is the convex hull of
states of the form |¢) (1|, that is,

S(H) = Conv{|) (4] , |[) € H, (Ply) = 1}. (16)

Equivalently, a quantum state on the Hilbert space H is described by a density operator

p € B(H), such that

p>0, trp=1. (17)
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The outcome probabilities of a POVM {My}"_, on the state p are given by the Born rule:

pla), = tr(pMa). (18)
Remark I1.10. States of the form p = |1) (1| are called pure states.

Since positive operators can be diagonalised, every d-dimensional quantum state can

be written as
d—1

p=> Al i, (19)
7=0

where \; > 0 are the eigenvalues and [¢;) are the corresponding (orthonormal) eigenstates
of p (in case p is not full-rank, some A; are 0, and the corresponding [¢/;) can be chosen to
be an orthonormal basis of the kernel of p), and we also have that trp =" A =1
Similarly, we can also allow for convex combinations of classical states. For a bit, this
means taking convex combinations of “0” and “1”, leading to the generic two-dimensional

classical state
¢ = pl0)(0] + (1 —p)[1)(1], pe0,1]. (20)

where, for a unified description of classical and quantum states, we have identified the
classical state “0” (“1”) with the fized projector [0)(0| (|1){1]) on C2. Similarly, we can

define a generic d-dimensional classical state:

Definition II.11. Let us fix an orthonormal basis {|j) ?;é on C%. Then, every d-

dimensional classical state can be written as
d—1
c=> pili il (21)
j=0
where {p;} is a probability distribution, and |j) is a fized basis on CY.

It is clear from the Egs. (19) and (21), that the set of d-dimensional classical states is
a strict subset of the set of d-dimensional quantum states, i.e. one can think of classical
states as quantum states that are diagonal in a fixed basis. In the following, we will use a

canonical representation of this fixed basis, usually referred to as the computational basis:

Definition I1.12. The set of basis vectors {|j) ;.l;(l) on C? can be represented as the com-

putational basis, with vector elements
k=041, J=0,....d—1, k=1,...,d (22)

As an example, the computational basis on a qubit space C? can be written as

1\ (o
{10), 1)} = , : (23)
o/ \1
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2. Composite systems, local realism and entanglement

So far we have only been concerned with the description of a single physical system.
However, the natural question arises: Having a description of two systems, how to describe
the composite system of the union of these two? The axioms of quantum theory provide a

prescription for such a scenario.

Definition I1.13. Given two physical systems corresponding to the Hilbert spaces Ha and

Hp, the composite system corresponds to the tensor product Hilbert space, Ha @ Hp.

The above definition applies to both the description of states and measurements. The
composite state of the systems corresponding to pa on H4 and pp on Hp is p = pa ® pp.
Similarly, given a measurement {A,} on H 4 and { By} on H g, we can define a measurement
{Ma, = Aq ® By} on Hq ® Hp. As an example, the state of two independent two-path
photons, one in its path “0” and the other in its path “1”, is written as [¢) (1| = [0)(0|®|1)(1].
Then, given which-path measurements {|0)(0|,|1)(1|} on both photons, we can construct
the measurement {|0)(0] ® |0)(0],]0)(0] @ |1)(1],|1)(1| ®]0)(0], |1)(1] ® |1)(1|} on the two-
photon system, with four different possible outcomes. In order to obtain the state of one
of the subsystems from the total state, we can apply the partial trace, which is defined on

the above simple tensors as

trp(pa @ pp) = tr(pp)pa = pa,
tra(pa @ pg) = tr(pa)ps = pB,

and is extended to arbitrary tensors linearly.
Note that the probabilities on the tensor product Hilbert space are still well-defined

and that in the above simple cases they factorise:

p(ab), = tr(pMap) = tr[(pa @ pp)(Aa ® By)] = tr(pada) tr(ppBy) = p(a)p,p(b)py- (25)

This simple fact reflects that the measurement statistics obtained from independent sys-
tems are also independent. Note, however, that on the tensor product Hilbert space
Ha ® Hp much more general states than those of the form ps ® pp can be defined.
Naturally, one might consider convex combinations of such states:
pP=> Pk Pi®pl >0, Y pp=1L (26)
k k
Having this state in mind, let us now consider a scenario in which H 4 and H g correspond to

physical systems that are space-like separated, for example, two simultaneous experiments
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in two distant laboratories. Note that according to special relativity, no communication
is allowed between the two laboratories — such experimental setups are usually referred
to as nonlocal scenarios. Consider sets of measurements on the two subsystems H 4 and
Hp, denoted by {AZ} and {B}'}, where a and b are the usual outcome indices, and « and
y label different measurements (measurement settings). Then the outcome probabilities
p(ablzy), = tr[p(AZ ® BY)] should intuitively factorise to convex combinations of p(a|xz) o

p(b|y)p;73. It is easy to check that this is precisely the case, as

= e tr(phi A7) tr(p BY)

plables) = t [(zpk e p%) (475 8Y)
k (27)

k

= > pi-plalz) - p(ly) -
k

In the following, we will see that all outcome statistics obtained from local realistic
models are of the above form. Local realism states that physical systems have well-defined
local properties, that is, every system is in one of finitely many (as per our previous

assumption) locally perfectly distinguishable states,

p:|]A><]A‘®‘]B><jB’7 jA:()a"'7dA_17 jBZO,...,dB—l, (28)

or potentially in a convex combination of such states,
p=">>_pN) - 17aN)GaN)| @ iB(\) (BN, (29)
AEA
where p()) is a probability distribution over some set A, and j/p(.) are functions from
A to {0,...,da/p — 1}. One might think of the A\ parameters as hidden variables. If
the experimenter knew the exact value of the hidden variable, they could precisely tell
which physical state the system is in. However, due to some noise or other randomness
(in general, the incomplete knowledge of the experimenter), what the experimenter sees is
just a random mixture of definite states. Intuitively, we might think that all randomness
that we see in experiments is due to such incomplete knowledge, and that given a better
understanding of Nature, we would be able to eliminate all randomness, and predict all
experiments with certainty.
Given the full description of the physical states, measurements in the local realistic

paradigm simply read out the pre-defined properties of the state:
AT @ BY =1ja)(al @ |iB)(jBl, ja=0,...,da—1, jp=0,...,dp—1.  (30)
That is, the outcome probabilities are deterministic:

PUA) )G = Siandtys (31)
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where 0, is the Kronecker delta.
Clearly, the experimenter might choose to locally post-process the outcome of these

measurements using potentially non-deterministic response functions

palalz,ja) >0, > palalz,ja) =1,

i (32)
pa(®ly,jp) =0, > pp(bly,js) =1,

b

that map the original outcome “j4” (“jp”) to a new outcome “a” (“b”) with probability

13 77

palalz,ja) [pe(bly, jB)], depending on the measurement setting “z” (“y”). This gives rise

to the final measurements,

ZPA alz,ja) AT, = " palalz,ja)lja)(jal

ja (33)
ZPB (bly, iB)BY, = pp(bly, jn)lis)(isl-
JB
Finally, the outcome distribution is given by
p(ablzy), [(ZP Nia(A)(Ga(N)] @ |jB(/\)><jB(/\)’>'
AEA
(ZPA(GI»’U,J'A)UA)(J'A| ® ZPB(byva)|jB><jB|)]
JA JB (34)

[ZZZP -palalz, ja) - pe(bly, JB) - 04 ja(n) * Ojp.in(n)

AEA ja JB

7a(N)(Gal @ |iB(A ]B|] > p(N) - palala, ja(N)] - pebly, ip(V)],
XeA

and therefore the statistics are of the form (27). This observation justifies the following

definition:

Definition II.14. Measurement outcome statistics on the Hilbert space Ha ® Hp of the
form
plablzy) = > p(A) - palalz, A) - pp(bly, A) (35)
A
are called local realistic. Statistics that cannot be written in this form are usually referred

to as (Bell-)nonlocal.

Crucially, not all states on H4 ® Hp can be written in the form (26), and such states
can potentially lead to outcome distributions that are not local realistic. Indeed, it turns

out that some quantum outcome distributions are not local realistic, a phenomenon that
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does not occur in classical (non-quantum) theories [EPR35, Bel64]. This means that we
cannot think of states as having pre-defined local properties, and measurements as simply
reading out these properties. Another consequence is that some events (measurement
outcomes) are genuinely random, that is, even if the physical state is perfectly known, the
measurement outcome is impossible to predict with certainty. Therefore, whenever the
violation of local realism is certified, on might also certify genuine randomness.

Let us look at a well-known example of measurement outcome statistics that violate

local realism [CHSHG9].

Proposition I1.15. Consider the state p = |1)(1)| on the Hilbert space C*> @ C2, where

1
V2
Let us consider a pair of two-outcome POVMs AY = {A% A%} and A = {AL Al} on
the first Hilbert space, and the pair B = {B},B%} and B' = {BL,Bl} on the second

%) (10) ®[0) + 1) @ [1)). (36)

Hilbert space. For later convenience, we label the outcomes “+” and “”, and introduce the
observables A* = A% — A* (= 2A% —1) and BY = BY — BY (= 2B{ —1), where z,y € {0,1}
label the measurement settings. Note that the observables fully specify the POVMs, and let

us pick the specific observables

AM_x Ay p_XtZ g X-Z (37)
V2 V2
where
01 1 0
X = and Z = (38)
10 0 -1

are the Pauli X and Z matrices, written in the basis {|0),|1)}. Then, the measurement

statistics
plablzy), = tr [[¥) (Y] (A7 ® BY)] (39)
do not have a local realistic description.
Proof. Let us consider the following linear functional on the measurement statistics
B = (A"B% + (A'BY) 4+ (A'B%) — (A'B') e R, (40)
where

(A*BY) = tr[|)(Y|(A" @ BY)] = p(+ + |zy) — p(+ — |zy) — p(— + |zy) + p(— — |zy) (41)
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is the ezpectation value of the observable A” ® BY. Notice that for the state in Eq. (36),

we have that tr{|¢)(y|(A ® B)] = §tr(ATB), where (.)" is the transposition in the basis

{]0), [1)}. Tt is also easy to verify that for the Pauli matrices X, Z it holds that X2 = Z2 =1
and tr(XZ) = 0. Therefore, for the state (36) and the observables (37) we have that

1 1

AOBO _ AOBI _ AIBO S AlBl =,

(A°B") = (A"B") = (A'B") 7 (A°B7) 7

and therefore the quantum value Bg of the expression (40) is Bg = 2v/2.

(42)

Now I will show that in any local realistic model, we obtain that the local value 8p
satisfies B, < 2, and therefore the statistics in Eq. (42) cannot be described by any local
realistic model. First, from Definition I1.14 it follows that any local realistic statistics can
be written as

Be=7 p(N) [(A"BO)x+ (A°B')\ + (A1 By — (A'B'),] = ) p(A\) - B2, (43)
A A

where

(A"BY)x = pa(+lz, A) - p(+ly, A) — pa(+lz, A) - pa(=ly, ) m

—pa(=|z, A) - pB(+]y, A) + pa(=lz,A) - pB(=|y, A),
since for a fixed A, all probabilities factorise. Notice that if we aim at maximising 8., the
hidden variable A is not necessary, because (. is linear in p(\). For example, if we only
have two values of the hidden variable, A1 and A9 such that ,821 > 522, then it is beneficial
to set p(A1) = 1 and p(A2) = 0. This argument trivially generalises to an arbitrary number

of possible values of the hidden variable, that is, we can always pick the value which gives

the highest value of ﬂé. Therefore, the optimal local realistic statistics can be written as
Be = (A"B% + (A°BY) + (A'B°) — (A'BY) (45)
where

(A*BY) = pa(+|z) - pa(+ly) — pa(+lz) - pa(=|y) (46)
—pa(=|z) - p(+ly) + pa(=|z) - pB(=|y)-
Notice that this expression is linear in all the p4(a|z) and pp(b|ly). Therefore, similarly to

the hidden variable argument, in the optimal strategy, deterministic distributions suffice,

that is,
pa(alz) € {0,1} and pp(bly) € {0,1}. (47)

Such statistics lead to (A*BY) = a” - bY, where a*,0Y € {1, —1}. From this, it is straight-
forward to verify that any local realistic statistics obey 8y < 2, and therefore the quantum

statistics in Proposition I1.15 cannot be described by any local realistic model. 0
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The above expression, 8y < 2, is known as the CHSH inequality, named after Clauser,
Horne, Shimony and Holt [CHSH69|. Most notably, recent experiments confirm the viola-
tion of the CHSH inequality [HBD*15, GVW 15, SMSC™15], which is a solid proof that
Nature itself does not behave in a local realistic manner.

The CHSH inequality is an example of Bell inequalities:

Definition I1.16. A Bell inequality is an inequality on a certain linear combination of
measurement outcome probabilities,

B = Z Aabry p(ab|:zy) < 6[:» (48)

a7b7x7y

satisfied by every local realistic model, such that there exist quantum states and measure-

ments that violate this inequality, that is,

Ba > fr. (49)

Note that in order to violate local realism (i.e. to violate a Bell inequality), it is essential
to have multiple measurement settings for both parties A and B. To see this, assume that
B has only access to one measurement { By}, while A has a set of measurements {AZ}. Let

us define the quantities
p(b) =tr[p(I® By)].

tr[p(AZ®By)] if (50)
p(b) # 0
plafep)=q "

0 if p(b) =0,

Then the outcome statistics for an arbitrary state p € S(Ha ® Hp) can be written as

plablzy), = tr [p (Af ® By)] = plalz,b) - p(b) = > p(¥') - plala,b') - 6y
T

(51)
=Y p(t)) - plalz,t) - pp) = Y p(b) - plalz,b) - pblp),
b/

b":p(b')#0
where we have defined p(b|b') = 051y, and all the objects appearing are well-defined condi-
tional probability distributions. Therefore, we might think of &’ as a hidden variable, and
we see that the above statistics admit a local realistic model.
From Eq. (27), it is also clear that another prerequisite for the violation of local realism is
that the state cannot be written in the form (26). Because of this fundamental importance,

this characterisation of quantum states is essential in quantum theory:

Definition I1.17. A quantum state p on Ha @ Hp is called separable, if it can be written

as

p=> - Pa®pE =0, Y p=1, (52)
k k
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for some quantum states p'j‘ and p’fg on Ha and Hp, respectively. Otherwise, it is called
entangled.
This definition naturally generalises to more than two Hilbert spaces: A quantum state

p on ®j H; is called (fully) separable, if it can be written as
k 7 k

for some quantum states p? on H;. Otherwise, it is called entangled.

Due to their importance, entangled states are studied in great detail, and apart from
the violation of local realism, they are useful for quantum teleportation, superdense coding,

quantum key distribution and many more tasks [HHHH09].

8. Mutually unbiased bases

In this section, I introduce a class of measurements with great information theoretical
relevance, which also forms a central object of interest for this thesis. Imagine that we have
access to two measurement devices with d outcomes each, that is, two POVMs {4,}2_,

and {Bb}gzl on a Hilbert space H. Assume that for some state |¢)) € H, we obtain a

[13)}

definite outcome, say “a”, of the measurement A:

pla)y = (P|Ad|) = 1. (54)

Also assume that in every such case, the outcome of the other measurement B is completely

random, that is,

(| Bylop) = é Vb=1,...,d. (55)

Finally, let us also assume the reverse relation:

(ABY) =1 = (Wldav) =& Ya=1,....d (56)

In words, the measurements A and B are such that if for some state [¢) the outcome of one
of them is certain, then the outcome of the other one is completely random. A well-known

example of such measurements is called mutually unbiased bases:

Definition I1.18. Let {|¢,)}¢_, and {|op)}{_, be two orthonormal bases on C4. These

bases are called mutually unbiased if

1
(WalonP =5 Vab=1,....d (57)
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Remark I1.19. The rank-1 projective measurements {|1q)(¥a|}_; and {|pp) (| }d_, cor-

responding to mutually unbiased bases satisfy the relations

(ElYa)(al€) =1 = [€) = *lva) = (Elon){sl€) = |(Walpn)|* =
(Elop)(wpl€) =1 = [€) = €)= (Elta)(Wal€) = |(Yali)|” =

)

(58)

QI Q=

for every a,b=1,...,d.

Mutually unbiased bases (MUBs) have a wide range of applications in quantum in-
formation theory [DEBZ10]. They are optimal for state determination [Iva8l, WFS89],
information locking [BWO07] and the so-called mean king’s problem [Ara03]. They also
give rise to optimal entropic uncertainty relations [MU88]|, and are used in cryptographic
protocols [BB84]|. The simplest example appears in Proposition II.15, which also shows

that MUBs are useful for violating Bell inequalities:

Example I1.20. The eigenbases of the Pauli X and Z operators are mutually unbiased.
Since Z|0) = |0) and Z|1) = —|1), the eigenbasis of the Z operator is simply

{10), 1)}, (59)

whereas since X|0) = |1) and X|1) = |0), the eigenbasis of the X operator is

1 1
{ﬂ<|o>+1>>,ﬂ<|o>—|1>>}=:{|+>,|—>}. (60)

It is straightforward to verify that

O 7 = [0 =) = [(L1+H) 1 = [ =)1* = 5, (61)
and therefore these bases are mutually unbiased.
Remark I1.21. Note that the POVMs A° and A' in Proposition I1.15 are

A% = {Jo)(o], [1)(af}, A = {lH) (H =) (=) (62)

Example 11.22. The above example can be generalised to arbitrary dimensions. Consider

the generalised Pauli operators in dimension d,

U
—

d—1
X= 1+ 1@l and 2= Wi)l, (63)
=0

i
o

where wg = e . The eigenbases of these two operators are mutually unbiased.
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In every prime power dimension this construction can be further generalised, and the
eigenbases of the (similarly defined) operators X, Z, X Z, X Z?, ..., X Z%~! form d+1 MUBs
(that is, d + 1 bases that are pairwise mutually unbiased) [BBRV02|. In fact, this number
corresponds to the maximal possible number of MUBs in any given dimension d [WEF89].
Therefore, the maximal number of MUBs in prime power dimensions is known exactly.
However, in any composite dimension d with prime decomposition d = [] j p;j , it is only
known that the number of MUBs is at least min; {p;j } +1 (using the above construction).
For instance, in dimension 6 the number of MUBs is 3 < #MUB < 7, but the exact number
is unknown. Zauner conjectured in his 1991 master’s thesis [Zau91] that the maximal
number of MUBs in dimension 6 is 4, and the widespread belief is that this conjecture is
indeed true. However, the proof has been eluding the community since almost thirty years

now.
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B. Certification schemes

Using the formalism of the previous section, in this section I formally introduce different
certification schemes. I start with the strongest method of self-testing (also mentioned in
the introduction), then I introduce the more experimentally friendly setup of prepare-and-
measure scenarios and discuss how to lower bound the dimension of the physical system
using them. Then, I show how to certify the quantum nature of a prepare-and-measure

experiment, and how ideas from self-testing can be adapted to this scenario.

1. Self-testing

We have already seen in the previous sections that certain measurement outcome statis-
tics in nonlocal scenarios certify that the experiment is inherently of quantum nature, that
is, it does not have a local realistic description. It turns out that in some cases much
stronger statements can be drawn simply from the measurement outcome statistics. The
strongest such certification scheme is called self-testing. In self-testing, we consider a non-
local scenario on the Hilbert space H4 ® Hp, where we will often refer to the parties as
Alice and Bob. We assume that there is no communication allowed between the parties
(no signalling), that they share some state p € S(Ha ® Hp), and that they have access to
local measurements {A%} and {B}'} on H and Hp, respectively. The aim of self-testing
is to characterise the physical setup (i.e. the state and the measurements) up to the min-
imum freedom that is theoretically possible by only looking at the measurement outcome

statistics
p(ablzy) = tr[p(Az @ BY)]. (64)

Such characterisations are usually referred to as device-independent (DI), because the ex-
perimenter treats their devices as black boxes, and the characterisation is made solely by
looking at the inputs and outputs of these boxes.

The minimum freedom for DI characterisation is defined by operations on the state
and the measurements that go unnoticed when we look only at the outcome statistics (64).
First, notice that we cannot make any claims on the measurements {A*} and {B}'} outside
of the support of the marginal states ps = trp p and pg = try p. Therefore, from now on
we assume that the marginal states are full-rank.

Also note that the outcome statistics in Eq. (64) do not change if we apply a local

1sometry
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Definition I1.23. An isometry on the Hilbert space H is a map V : H — H’', such that

VIV =1. That is, the mapping preserves all inner products,

(Vp|Ve) = (|VIV]e) = (¥le)  VI¥),|e) € H. (65)

The action of the isometry V on operators A € B(H) is defined as A — VAV, which

preserves the Hilbert—Schmaidt inner product:

VAV, VBV s = tr(VAIVIVBYVT) = tr(ATB) = (A, B)ys VA, B e B(H). (66)
Definition I1.24. A local isometry on the Hilbert space Ha @ Hp is a map V : Ha ®
Hp — Ha @ Hpr, such that

V=V4® Vg, (67)
where V4 and Vg are isometries on Ha and Hp, respectively.

Indeed, for every local isometry it holds that
p" (abley) = wlVpVI(VadiV]) © (Ve BVE)] = trlp(4 © BY)] = plablay),  (68)

that is, applying a local isometry is undetectable from the outcome statistics.
Similarly, we cannot detect if an auxiliary state is appended to the system, on which

the measurements act trivially, that is,
p7 (ablay) = tr[(p @ 0)(A; @ By @ I)] = trp(A; @ By)] = p(ablzy) (69)

for every state o € S(Hg) on some auxiliary Hilbert space Hg.
Putting the above observations together, we are in a position to formally state what it

means to self-test states and measurements in a nonlocal scenario [MY98, MY04].

Definition II1.25. The outcome statistics p(ablxy) self-test the state p € S(H; @ Hp)
and the measurements {A*} on H; and {Bg} on Hp if for all states and measurements

peSHA®HB), {AZ} on Ha and {B}]} on Hp, such that

p(ablzy) = tr[p(A7 ® By, (70)
there exists a local isometry V =V 4@V : HAa@Hp = (H1 @ Hp) ® (Ha @ Hp), where
Va:Ha—HiQ0Ha and Ve : Hp — Hz @ Hpr, such that

VpVi=j00

VaALV] = A2 @1y Vr,a (71)

VB!V = B! @lp  Vy,b

for some o0 € S(Ha @ Hpr).
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That is, upon observing p(ablzry), the experimenter can be certain that there exists
a local isometry mapping the physical realisation p, {AZ},{B} } to the desired state and
measurements p, { A%}, {Bé”} More specifically, the local isometry maps the physical re-
alisation on H4 ® Hp to the tensor product of the relevant Hilbert space H ; ® H 5 and
some “junk” Hilbert space H 4 ® Hp:. The relevant Hilbert space contains the state and
the measurements to be self-tested, whereas the junk Hilbert space contains an arbitrary
state on which the measurements act trivially. Notice that if the parties A and B know
the precise form of the isometries V4 and Vg, they can locally extract the state p and the
measurements { A%} and {B}} by applying the isometries. It is also worth noting that in
general scenarios it is not known what is the largest class of operations that preserve all
outcome distributions. For example, a complex conjugation leading to p*, {(A%)*} and
{(B)*} also preserves p(ablzy), but in general this cannot be written as a local isome-
try. Similar observations lead to slightly different definitions of self-testing; for a recent
comprehensive review see Ref. [SB19).

As an example, let us take another look at the CHSH inequality in Proposition I1.15. We
have already seen that whenever the Bell value 8 in Eq. (40) exceeds 2, then the experiment
violates local realism. In addition to this, it turns out that the optimal Bell violation self-

tests the state and the measurements from Proposition I1.15 [Tsi87, SW87, PR92|.

Proposition I1.26. The mazimal violation of the CHSH inequality, B = 2/2, self-tests
the state

1

V2

and the measurements corresponding to the eigenbases of the observables

1) (10) ®[0) + [1) @ 1)), (72)

X+2Z 5 _X-2
V2 V2

That is, upon observing the maximal violation of the CHSH inequality, the experi-

A=X, A=z B=

(73)

menter can be certain that there exists a local isometry extracting the above state and
measurements from the actual physically implemented setup. For the case of the CHSH
inequality, this isometry is in fact constructed from the physically implemented measure-
ments and therefore can be straightforwardly performed in the laboratory to extract the
desired state and measurements.

While self-testing statements like the one above are incredibly powerful, the formulation
in Definition II.25 has little relevance to actual experiments, because one never observes

perfect outcome statistics in the laboratory. In fact, one never even observes any exact
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statistics, due to the fact that in practice only a finite number of experimental rounds can be
performed, leading only to an approximation of the actual statistics. In order to overcome
these limitations, the concept of robust self-testing has been extensively studied [BLM ™09,
MYS12, YVBT14, BNST15]. Robust self-testing statements allow for an approximate
characterisation of the state and the measurements for the case of imperfect statistics, and
can be applied to experiments [TWET17].

While there are plenty of possible approximate characterisation schemes for states and
measurements (see Ref. [éBlQ]), let me present one example of a robust characterisation

of measurements using the CHSH inequality [Kanl7].

Proposition I1.27. For the observed violation of the CHSH inequality, 5, it holds that

B<2vV1+1, (74)

where t = %tr(“AO,AalA) € [0,1] is the effective commutator, |A| = VATA is the

operator absolute value and [A°, AY] = AYAl — AT AV is the commutator.

Note that the effective commutator is a relevant characterisation of Alice’s measure-
ments in nonlocal scenarios. It is invariant under local isometries, and it only makes
statements about the measurements on the support of the marginal state. Moreover, for
the ideal case, § = 2v/2, it is equivalent to the self-testing statement in Proposition I1.26,
and it gives a non-trivial statement for any violation of local realism, that is, for any 5 > 2.

Robust self-testing statements open up the possibility of real world applications. Since
these statements provide experimentally verifiable DI characterisations of states and mea-
surements, it is natural to propose certification schemes for quantum information process-
ing tasks based on self-testing. Accordingly, self-testing statements have been linked to
device-independent randomness generation, quantum key distribution, entanglement de-
tection and delegated quantum computing; for a thorough account, see Ref. [éB19].

Self-testing is an active field of research with many potential applications, however,
there are a few drawbacks associated with it. Firstly, as discussed in section ITA 2, in
order to violate a Bell inequality, entangled states are necessary. This makes it difficult to
implement self-testing protocols experimentally, as the preparation of entangled states is
rather challenging, especially in high dimensions. Secondly, in high-dimensional settings
deriving theoretical results is also a big challenge, partially due to the fact that the set
of operations preserving all outcome distributions is unknown. Accordingly, there are
only a few self-testing results in high dimensions that are not extensions of qubit results

[KST*19, SSKA19|. This challenge is important and timely, as with current technology
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experimenters can already prepare and manipulate higher dimensional quantum systems
with high precision [DLB*11, FLP*12, MMZ16]. Lastly, the formulation of self-testing in
Definition I1.25 aims at characterising the state and the measurements up to the minimal
theoretically allowed freedom. While this is particularly elegant for the theory, in practice
the experimenter might just want to certify some relevant property of their setup.
Therefore, in the remainder of this section I will describe relaxations of the rigid self-
testing scenarios. I introduce the prepare-and-measure scenario that does not require
preparing entangled states, and is therefore easier to implement experimentally. I will
discuss how to bound the dimension of the physical system and certify the quantum nature
of the experiment in this setup. Then I will discuss how to adapt the notion of self-testing

to prepare-and-measure scenarios.

2. Prepare-and-measure scenario

Consider again the laboratories of Alice and Bob. As in the nonlocal scenario, assume
that they have some settings, x and y, respectively. In the prepare-and-measure scenario,
however, they do not share any physical state. Instead, Alice uses her setting = to prepare
the quantum state p,, which then she sends to Bob. Then Bob, according to his setting ¥,
performs a measurement {B}} and announces his outcome b. The experiment is described

by the outcome statistics, which in this case is written as

p(blzy) = tr(p.By). (75)

Our assumption is that there is no additional communication allowed between Alice and
Bob, apart from the state pg.

Notice that since the set of d-dimensional quantum states can be embedded in the set of
(d + 1)-dimensional quantum states, there is in principle a larger set of outcome statistics
achievable with higher dimensional states. That is, if for fixed numbers of settings | X| and
|Y| we denote the set of achievable outcome distributions in dimension d by PllX|’|Y|, then
we have that 736|lele| - Pcll)ﬂ’m. This observation leads to the idea of dimension witnesses

[GBHA10].

Definition I1.28. An inequality on a certain linear combination of outcome probabilities

/8 = Zabmy p(b|l‘y) < Qd (76)

bxry

is a dimension witness if for every set of states and measurements py, {Bg} such that
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pz € S(CY) and Bg € B(C%) we have that B < Qg, whereas for some p, € S(C¥Y) and
B} € B(C1) we have that B> Q.

That is, violating a dimension witness for dimension d certifies that the employed quan-
tum states and measurements are of dimension at least d + 1. To illustrate the concept,

let me introduce probably the simplest example, using only one measurement setting.

Proposition 11.29. Consider the following “compression” task: Alice has the setting x =
0,1,2, based on which she prepares the state p, € S((Cd), which she sends to Bob. Bob
has a single measurement, {Bb}gzo, and his task is to guess Alice’s input x. The average

success probability
> p(b=zlr) < Qs (77)

18 a dimension witness for d = 2 with mazximal quantum values Qo = % and Q3 = 1.

In order to prove the above proposition, we will make use of the notion of the operator

norm:

Definition I1.30. The operator norm of the operator A € B(H) is defined as

|41 = sup { /(AVTAG] , o) € M, (Wlw) = 1], (78)

For Hermitian operators, this definition is equivalent to

[Al = sup {[(L[A[P)] 5 [¥) € H, (Pl) =1} (79)

Now let us turn to the proof of the above proposition.

Proof. From the above definition, it immediately follows that p(b = z|x) = tr(p,B;) <
|Bz| < tr By, and we get equality if p, is the eigenstate of B, corresponding to its largest
eigenvalue, and if |B;| = tr B, (i.e. the rank of B, is 1). Therefore, the average success

probability for 2-dimensional systems is bounded by

12 12 12 1 2 1 5
p= - t B;) < - B.| <= trB, = -t B, | =-trl, = =. 80

This bound is saturated e.g. for the strategy

po = [0)(0[, p1 = p2 = [1)(1],

By =10)0], Bi=[1){1], Bz =0,

(81)

which simply corresponds to encoding x = 1 and 2 in the same manner, at the cost of

never winning when z = 2, but winning all the other cases.
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On the other hand, for 3-dimensional systems we obtain p = 1 with the strategy

po = [0){0, pr = [1)(1], p2=1[2)(2|

By =10){(0|, By =|1)(1], By =12)(2|.

(82)

This is simply the manifestation of the fact that in a 3-dimensional state space Alice is
able to encode 3 perfectly distinguishable messages (while in a 2-dimensional space she

cannot). O

Therefore, if in the above task the experimenters observe an average success probability
larger than 2/3, they can be certain that the dimension of the system is at least 3. Notice
that in the above scenario, quantum and classical strategies achieve the same average suc-
cess probability, since the optimal strategies are classical. However, in general, dimension
witnesses can also be used to certify the quantum nature of some experiment. If we fix the

dimension d, we can also pose a classical version of the inequality in Eq. (76),

B = Z Ay -p(blry) < Cq, (83)

b,x,y
where Cy is the maximum value of S achievable by d-dimensional classical states and
measurements, in the sense of Definition I1.11 and Eq. (33). Since the set of d-dimensional
quantum states and measurements is strictly larger than the set of d-dimensional classical
states and measurements, in theory it is possible to violate the inequality (83) by employing
d-dimensional quantum states and measurements. Therefore, whenever some outcome
statistics violate the inequality (83), the experimenter can be certain that the experiment
does not have a classical description, under the assumption that the dimension does not
exceed d. Let me present a simple example of such a witness, that constitutes a central

object of interest of this thesis.

Example I1.31. A “2¢ — 17 quantum random access code (QRAC) is a prepare-
and-measure scenario parametrised by an integer d > 2, referring to the dimension of the
employed quantum system (see also Fig. 1). Alice’s settings are denoted by x = x1x2, where
w1,09 € {1,...,d} =: [d]. According to this setting, she prepares a state py s, € S(CY),
which she sends to Bob. Bob has the setting y € {1,2}, according to which he performs the
measurement {Bg}gzl. Bob’s aim is to guess Alice’s setting x,. As the figure of merit, we

employ the average success probability (ASP):

1 1
p= %) Z Zp(b = xy|r1, T2, Y) = 242 Z ZtT(PmmBgy)- (84)

z1,w2=1y=1 z1,22=1y=1
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FIG. 1: A 2¢ — 1 quantum random access code.

QRACs can also be seen as compression tasks, where Alice attempts to compress two
classical dits (d-level systems) into one qudit, but this time Bob only tries to recover one of
them (although Alice does not know in advance which one). As we will see in the following,
quantum strategies provide an advantage in QRACs, and due to this, QRACs constitute
a basic building block in many quantum information processing protocols; see e.g. [0z009]
for a thorough account on their applications. As an example, I show that the simplest

version of this task, corresponding to d = 2, provides a witness of quantumness:

Proposition I1.32. The 22 — 1 QRAC serves as a quantumness witness, as its classical

ASP is bounded by

3
whereas quantum stmtegz'es can achieve
5 —1(1+ 1)~08536 (86)
pQ = D) \/5 ~ U. .

Proof. For the sake of this example, let us denote the settings and outcomes by zq, z1,y,b €
{0,1}. Since the ASP in Eq. (84) is linear in both the state preparations and the measure-
ments, it is sufficient to consider extremal states and measurements. For the classical case,
this means that we fix a basis {|0), |1)} on C2, and each state is a pure state p, = [0)(0
or [1)(1] (i.e. the distribution p; in Definition II.11 is deterministic). Moreover, every

measurement {Bf, B} is one of the possibilities

{10) €01, [1) {1}, {1 L), [0){0l},  {T,0}, {0,I} (87)
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(i.e. the distributions p(bly,j) in Eq. (33) are deterministic). This gives rise to finitely
many possible extremal strategies, and it is straightforward to verify that po < %. This

bound is achieved e.g. by the strategy

parwy = |21) (71, By = [b)(b, (88)

i.e. simply sending the first bit of Alice’s setting, which Bob reads out. Therefore, whenever
y = 1, they win with probability 1, and whenever y = 2, they win with probability %,
resulting in the overall ASP po = %.

For the quantum value, consider the measurements corresponding to qubit MUBs,

B =10)(0], By = [1)(1,
(89)
By = |+)(+], Bi = [=)(~]|
and the states p;,,, projecting onto the eigenvector corresponding to the largest eigenvalue

of (BY + Bi,). This gives rise to

1 1 <
ﬁzg Z tr[pmol‘l(Bi(t)o—i_B;'l)]:g Z HBgO—I—B}HH
z0,21=0 z0,21=0
= < (Jiyor+ 1] + oy or+ =)= 1] + iyt + Bt + i + 1-36-1])
()4 )
(90)
O

Therefore, if the experimenters observe a 22 — 1 QRAC success probability p > %,
they can be certain that the systems are of quantum nature, given that the dimension is
restricted to 2.

Note that in order to make any non-trivial statement about the physical setup in the
prepare-and-measure scenario, it is essential to assume an upper bound on the dimension
(or have some alternative assumption, see e.g. [CBB15, VHWCT17, BME"17]). Indeed, if
x=1,...,]X]| and Alice is allowed to send any state of dimension |X|, then she might just
send one of | X| orthogonal states, which Bob is able to distinguish perfectly. This way,
Bob knows exactly the setting of Alice, and they are able to reproduce every probability
distribution p(b|zy). This strategy works in both the quantum and the classical regime,
and therefore in this case it is impossible to deduce that the experiment is of genuine
quantum nature. Therefore, it is a usual assumption in prepare-and-measure scenarios to
restrict the dimension to some fixed d < | X|, an assumption sometimes referred to as the

semi-device-independent (SDI) assumption.
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The advantage of the SDI paradigm is that it is much easier to implement experimentally
than DI tasks, and it also facilitates the derivation of theoretical results. Accordingly, the
SDI assumptions are used in many quantum cryptographic protocols [PB11, LPY 12,
LBLT15]. SDI statements provide highly practical certification schemes, however, their
potential is still not fully exploited. Note that in some scenarios, simply certifying the
quantum nature of an experiment might not be completely satisfactory. Imagine that
we are promised that the dimension of the quantum system is 4. However, also imagine
that this 4 dimensional system is composed of the following prepare-and-measure scenario:
Alice prepares a qubit, and sends it to Bob, who measures it and notes down his outcome.
Then, Alice prepares another qubit, sends it again to Bob, who measures it, and his second
outcome together with the first one consists his final outcome. This experiment can be
written as a prepare-and-measure scenario in dimension 4, however ideally we would like to
distinguish these kind of experiments from those in which Alice prepares a 4-dimensional
state, sends it to Bob, who measures it and produces his outcome at once, as this latter
scenario is clearly more general. Therefore, we might be able to devise a kind of refined

dimension witness, which for d = 4 would read

5 = Z Ay p(b|$y) < Q2®2a (91)

b,a,y
where Qag2 is the maximal attainable value of 5 with a sequential qubit strategy (math-
ematically, using two separable qubits and two separable measurements). These type of
refined dimension witnesses are precisely what we study with my collaborators in Ref. [A],
and I will discuss the results in section 11T A.

Furthermore, we might want to fully characterise the physical setup under the SDI
assumptions. That is, we want to characterise the states p, and the measurements {B}'}
by only looking at the outcome statistics p(b|zy), assuming the dimension d. Compared
to the nonlocal scenarios, in the prepare-and-measure scenario we do not allow for extra
degrees of freedom, and there is no tensor product structure on the Hilbert space. There-
fore, the natural class of operations preserving all outcome statistics is simply unitary

whenever U is a unitary operator. Therefore, the following definition is a natural adapta-

tion of self-testing for the prepare-and-measure scenario [TKVT18]:
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Definition I11.33. The outcome statistics p(blzy) self-test the states p, and the mea-
surements {Bg} on C% in the prepare-and-measure scenario, if for all states p, and

measurements {B{} on C? satisfying
p(blzy) = tr(ps BY) (93)
there exists a unitary U on C% such that

UpU' = fp Va,
(94)
UBJU" = B! Wy,b.

Again, notice that in general unitaries are not the largest class of operations preserving
all outcome statistics (for example, complex conjugation preserves the statistics in this
scenario as well). Also notice that robust versions of this definition need to be introduced
in order to make the statements experimentally relevant (which has also been studied in
Ref. [TKV18]).

While such self-testing statements in the prepare-and-measure scenario are both easy
to implement experimentally and provide the theoretically most precise characterisation,
they might not always be practical. In some scenarios, the experimenter might only be
interested in certifying some relevant properties of the setup, allowing for more freedom
than a unitary operation. Moreover, techniques for higher dimensional settings need to be
developed in order to harness the full potential of currently available technologies. These
are precisely the problems that we tackle with my collaborator in Ref. [B|, and I will discuss

the results in section III B.
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C. Incompatible measurements

One particularly relevant property of sets of measurements in quantum information
theory is that of joint measurability, or compatibility. For the sake of simplicity, I will
focus on the compatibility of pairs of measurements, but this notion can be straight-
forwardly generalised to larger sets. This truly quantum phenomenon may occur when
we have access to only a single copy of a physical state p. Imagine that we are inter-
ested in simultaneously measuring two distinct properties of this state, corresponding to
the POVMs {Aq},2, and {B,},%,, which individually give rise to the outcome distri-
butions {pa(a),}i2, = {tr(pda)}.2; and {pr(),},2, = {tr(pBs)},2,. In other words,
we would like to draw a variable from a joint distribution of the two measurements,
{p(ab)p} 272, that is, from a probability distribution such that 37, p(ab), = pa(a),
and ), p(ab), = pp(b), for all a,b, p. In quantum theory, surprisingly, there exist pairs of
measurements such that it is impossible to obtain this joint distribution by measuring a
single copy of the state. Such measurements are called not jointly measurable or sometimes
incompatible. In order to grasp the phenomenon of incompatibility, let me start with the
definition of compatible measurements, which follows rather straightforwardly from the

above considerations [Lud54, BLPY16]:

Definition I1.34. Two POVMs, {A.}02, and {By},2, on the Hilbert space C? are
called jointly measurable or compatible if there exists a so-called parent POVM

{Gab}Zifle on C¢ such that

ng
ZE:(iw::-Aa Va,
b=1

» (95)
Z Gu = B, Vb.

a=1
Otherwise, they are called not jointly measurable or incompatible.

This definition captures the possibility of drawing a variable from the joint distribution

of p(a), and p(b),, via the measurement {Ggp}. Indeed, we get that

> palab), =Y tr(pGap) = tr <p > Gab> = tr(pAs) = pala), Va,
b=1 b=1 b=1 (96)

na nA na
Zp(;(ab)p = Ztr(pGab) = tr (pz Gab> = tr(pBy) = pB(b), Vb.
a=1 a=1 a=1

In the following, we will denote the set of compatible (jointly measurable) POVM pairs in
dimension d with outcome numbers n4 and ng by J MZA’HB , and all such POVM pairs by

POVMA"5,
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To give a better idea on compatible and incompatible measurements, let me provide

examples for both of them.
Example I1.35. A pair of commuting measurements, {Aq},2, and { By}, 2, such that
[Ag, By) = AaBy — ByA, =0 Va,b (97)
1s jointly measurable with the parent POVM
Gap = AuBy, (98)

7

which is positive in this case, as Ay,Bp = Atll/ 2BZ,A}I/ % For example, the trivial “coin toss’

I " I\"®
{ — } and { — } (99)
NA ) 4—1 nB ) p=1

are jointly measurable with the parent POVM

measurements

I

Gap = .
nAng

(100)

Note that for the case of projective measurements the above example provides a com-

plete characterisation of compatible measurements [HRS08]:

Proposition I1.36. For the case of projective measurements, commutation and joint mea-

surability are equivalent.

This observation provides the opportunity to give an example of incompatible measure-

ments.

Example I1.37. A pair of MUB measurements, {|{q)(ta|}l_; and {|op){pp|}i, in di-
mension d are incompatible, because they are projective and
[[$a)(Wal, [06) {8l] [0} = (alin)(@bltbar) tha) — {@blta) (Palthar) |ob)
= <¢a|‘pb><90b’¢a’>’¢a> #0

for a # d’, that is, they do not commute.

(101)

The definition of incompatibility in Definition 11.34 turns out to be equivalent to the

following, operationally more transparent definition [HMZ16]:

Definition I1.38. Two POVMs, {A.}02, and {By},.2, on the Hilbert space C? are com-
patible if and only if there exists a parent POVM {Gg}gﬁl and post-processings pa(.|g) and
pa(.lg) such that

ZpA(a|g)Gg =A, Va,
g

> pp(blg)Gy = By Vb

g

(102)
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This equivalent definition captures that instead of measuring both {A,} and {B} to
obtain the distributions p(a), and p(b),, one only needs to measure {G4} to obtain the
distribution p(g),, from which both p(a), and p(b), can be recovered via post-processing.
This latter definition also makes it apparent that classical measurements in the sense of
Eq. (33) are always compatible.

Furthermore, Definition I1.38 makes it straightforward to argue for another classical fea-
ture of compatible measurements, namely that it is impossible to violate any Bell inequality

if one of the parties has access only to compatible measurements [WPGF09]:

Proposition 11.39. In a nonlocal scenario, if one of the parties has access only to com-

patible measurements, then the resulting outcome statistics are local realistic.

Proof. Without loss of generality, we can assume that the measurements of Bob, {Bé’},
are compatible. That is, extending Definition I1.38 to more than two measurements, there

exists a parent POVM {Gg4} and post-processings p(.|y, g) such that

Bl = p(bly,9)Gy Vy,b. (103)
g

The outcome statistics of the experiment can then be written as

p (Ai ® Y plbly, g)Gg>

plablzy) = tr[p(Ag @ By)] = tr

= > pl(bly, ) trlp(AL © Gy)].

(104)
Let us now define the quantities
p(g) =tr[p(I® Gy)].
trlp(AF®Gy)] (105)
=Eoes=e it p(g) #0
plalz,g) =4 "
0 if p(g) =0,

Using these, the outcome statistics read

plablzy) =Y " plg) - plalz,9) - p(bly,9) = Y plg) - plalz,g)-p(bly,g),  (106)
9 g:p(9)#0

which is a well-defined local realistic model. O

Note that the argument essentially boils down to observing that if Bob’s measurements
are compatible, then his measurements can be simulated with just one setting correspond-
ing to the parent measurement {G,}. Then, for the case of one setting we have already

seen in section I A 2 that any statistics have a local realistic description.
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Apart from Bell nonlocality, incompatible measurements turn out to be useful in
Einstein—Podolsky—Rosen steering [QVB14, UBGP15] and a particular class of state dis-
crimination tasks [CHT19]. For this reason, it is desirable to go beyond the dichotomic
characterisation of compatible/incompatible measurements, and devise measures that
quantify to what extent a pair of measurements is incompatible [HMZ16]. Such measures
then characterise the usefulness of measurement pairs in the above mentioned tasks.

One natural class of these quantifiers is measures based on robustness to noise. Imagine
that we are given a pair of incompatible POVMs {A,},24, and {By},”. Let us assume
that due to some experimental imperfections, the actually implemented measurements are

noisy versions of the original POVMSs, that is, POVMs with elements

I
Al =nAs+ (1 —n)—,
”HA (107)
B! =nB 1—n)—
b n b+< Tl)nB7
or, alternatively,
— I 1
(A7B):77(A7B)+(1_77) R ) (108)
na Np

adopting the notation A = {A,},2,, where n € [0,1] is the visibility of the measurements.
Clearly, we have that for = 1, the measurements {AJ} and {B}'} are incompatible, and
also that for n = 0 they are compatible. It is then apparent that there exists a critical

* at which the measurements become compatible. This critical visibility is a

vistbility, n
robustness measure of incompatibility, as it quantifies the amount of noise that needs to
be added to the measurements to become compatible.

Note that in the above example, we have assumed that the noise takes the form of
the trivial POVMs, {I/na} and {I/np}. However, we might assume different models of
noise. In full generality, we can assign any subset of the set POVMZA’HB to be our noise
model for the original POVM pair (A4, B). Let us consider some subset N4 g, such that it

contains at least one compatible pair. Then, the following notion is well-defined, and it is

a meaningful robustness measure of incompatibility |[C]:

Definition I1.40. Given two POVMs, {A.}n2, and {By};?, on C%, and a correspond-
ing noise set, Ny p C POVMZA’nB such that NA,BHJMZA’HB # (0, we say that the

incompatibility robustness 1}y p of the pair (A, B) with respect to this noise model is

Mp= s 0|0 (AB)+1—n (M N)eIMPT L (109)
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Note that if the noise set contains more than one pair, then we also need to optimise
over this set. In other words, we have to find the noise pair (M, N) of which we need to
add the least amount to (A, B) in order to make them compatible.

These measures are not only meaningful quantifiers of incompatibility, but are also
relevant for experiments: They provide an error threshold for the experimenter on the
amount of noise that their measurements can tolerate under a given noise model before
becoming compatible, and therefore useless for certain quantum information protocols.
Accordingly, several special cases of these measures have been studied in the literature,
corresponding to different noise models [HMZ16, CS16]. However, despite the significant
effort from the quantum information community focused on studying these measures, their
properties and the relations between the different measures are still not well-understood.
Moreover, the natural question whether there exists a single most-incompatible pair of
measurements in a given dimension also remains unanswered. In order to fill these gaps in
our general understanding of robustness based measures of incompatibility, together with
my collaborators I study these measures, their properties and relations, and tackle the
question of the most incompatible measurement pair in our work [C|, the results of which

I will discuss in section IIIC.
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III. RESULTS

In this section, I discuss the results of the works [A], [B], [C], attached to this thesis.
For each of these works, I summarise the state of the art at the time of writing the articles,
the main results of the articles and the main technical details. For more details, please

refer to the attached papers in part II.

A. Certifying an irreducible 1024-dimensional photonic state using refined

dimension witnesses

1. State of the art and results

At the time of writing the article [A], it was already known that 2¢ — 1 QRACs (see
Example I1.31) serve as quantumness witnesses. Specifically, it was shown in Refs. [AKR15,

CSTP18] that in dimension d the maximal classical ASP is

1 1
p<po=-[1+= 110
p<po=g < + d) ; (110)
and Ref. [THMBI15] provided explicit quantum strategies employing MUB measurements

reaching

po=3 (1) > pe (1)

Therefore, under the assumption that the employed states and measurements in a 2% — 1
QRAC are d-dimensional, if the experimenter observes an ASP larger than the value in
Eq. (110), they can be certain that the experiment is of quantum nature.

However, the natural question arises: as discussed in section II B 2, it is reasonable to
assume that a d-dimensional strategy that consists of lower dimensional sequential strate-
gies will violate the inequality (110), but will not reach the value (111). That is, simply
certifying the quantum nature of the experiment does not necessarily give a faithful charac-
terisation of it. In large dimensions this becomes a crucial distinction, as one would ideally
like to be able to differentiate, say, 10 qubits prepared sequentially (therefore their joint
state is separable) from a full 1024-dimensional quantum state (that one might think of,
mathematically, as 10 entangled qubits). The question is then: can we devise a certification
method to distinguish these fundamentally different scenarios?

In our work [A], we answer this question positively, using the 2¢ — 1 QRAC. Let us

assume that the dimension d factorises as

d=dy-do-...-dp, dp €N, dp>2, (112)
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and accordingly, the states prepared by Alice and the measurements of Bob also factorise

as

Pr=py ®pr @ @ pp,
(113)
My = (My)' @ (Mp)* @ - @ (My)",

where pF is a dj-dimensional state and (Mbyk)k is a POVM on C%. We call such a con-
struction a product structure, and we call it non-trivial if » > 2. Note that in principle we
can also allow for convex combinations of states and measurements like the ones above,
but due to the linearity of the ASP, these are not necessary when optimising the ASP. Also
note that mathematically this formulation is equivalent to studying entanglement struc-
tures, however, in the prepare-and-measure scenario there is normally no natural tensor
product structure, as we think of the systems as single d-dimensional entities. Therefore,
we restrain from the terminology “entanglement”, and refer to states and measurements
that cannot be written in a non-trivial product form as irreducible. Our aim is then to
certify irreducible d-dimensional states and measurements.

We achieve this certification by providing tight bounds on the achievable ASP for states
and measurements of the form (113). In particular, these bounds are different for different
product structures. Therefore, 2¢ — 1 QRACs allow for certifying that the states and
measurements are irreducible, if all the ASP bounds corresponding to non-trivial product
structures are violated.

In order to demonstrate the applicability of our methods, we worked together with an
experimental team to show that these techniques allow for certifying irreducible states
and measurements of dimension 1024. The experiment performs a 2'°%4 — 1 QRAC using
spatial degrees of freedom of a single photon. The observed ASP violates the bound for the
highest non-trivial product structure, d = 512 - 2, by more than one standard deviation,
and therefore it certifies that the employed states and measurements are of irreducible

dimension 1024.

2. Technical details

Our main technical tool that allows us to analyse the performance of non-trivial product
structures is to show that in an optimal implementation of the QRAC game, the parties
effectively play r parallel instances of the game, in dimensions di,do,...,and d,, respec-
tively (see Fig. 2). Accordingly, they win the full d-dimensional game if they win all the r

sub-games. In order to reach this conclusion, first notice that the most general strategy of
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(a)

FIG. 2: (a) A generic QRAC with a product structure. (b) The optimal ASP can be achieved by
playing r parallel QRACs, following from Lemma III.1.

Alice and Bob is in fact slightly more general than the formulation of Eq. (113) suggests. In
principle, Bob might employ a so-called sequential adaptive strategy. Note that without loss
of generality, we can assume that he applies his measurements (M), (M%)?, ..., (M)
in a sequential fashion, since these measurements act on different systems. Then, later
measurements might depend on the outcomes of former ones, i.e. Bob’s measurements can
in general be written as

r—1

2
MY = (M2 @ (MEY )2 @ @ (MEP by, (114)

The idea behind sequential adaptive strategies is that Bob adapts his measurements while
obtaining the outcomes, therefore introducing classical correlations between the different
subsystems and potentially gaining on the ASP. However, we show that these kind of

strategies are not necessary.

Lemma IIL.1. In a 2¢ — 1 QRAC with non-trivial product structure, sequential adaptive

strategies are not necessary to reach the optimal ASP.

Proof. See Ref. [A]. O

What this result implies is that the optimal strategy of Alice and Bob is that they play
individual QRACs on each of the r subsystems, in parallel. This is achieved by splitting

up Alice’s classical inputs according to the product structure, that is, z, = xiwg e Ty,
where a;'gj € {1,...,dx} and y € {1,2}. Alice then encodes =¥ and z% into pi",fz,; and sends

it to Bob. Bob measures (M, ;’k)k, and announces his outcome b*. The final outcome is then
b=>b'"2...b", and they win the round if b = Ty, that is, if b= w’lj forall k=1,...,r.

Let us denote by p’y‘: the average probability that Bob correctly guesses :c’y“ . Then, the
ASP corresponding to r parallel QRACs can be written as

1

1525(19%-19?-----p§+p%-p§-----p5)- (115)



o6

Clearly, the quantities p’f and plg are not independent. Our next technical result is to estab-
lish the relationship between these two. For this result, we assume that the optimal QRAC
strategy is achieved by projective measurements (for a justification of this assumption, see

our subsequent result in Ref. |B]).

Lemma II1.2. Let us consider a 2 — 1 QRAC with projective measurements, and let us
denote by py the average probability that Bob correctly guesses x,. Then, the quantum

trade-off function defined as
M (2) == max{ps | p1 = 2}, (116)

where the maximisation is taken over all possible d-dimensional strategies that give rise to

p1 = z, s given by

/\/lg(z):l—(Cl;l) <\/2— ;:T)Q (117)

Proof. See Ref. [A]. O

Using the above trade-off functions, the ASP of a 2¢ — 1 QRAC with non-trivial

product structure can be written as

1

p=glpopi- P+ MG (1) - MG, (D) - MG (P])]- (118)

This expression depends on r parameters, p’f, and can be maximised using heuristic nu-
merical methods. This provides an effective and accurate (up to machine precision) way
to obtain a tight upper bound on the QRAC ASP for any product structure.

To demonstrate the applicability of our methods, we applied our machinery to the case
of d = 1024. Using the techniques above, we obtain bounds on the ASP for every product
structure. In order to be concise, I present only a few relevant cases in Table I, but the
full list can be found in Ref. [A].

Given the above values, we worked together with an experimental team to certify ir-
reducible 1024-dimensional photonic states and measurements. While the experiment is
not central to this thesis, let me briefly present a few key features of it, and its results
(see Fig. 3). The quantum states are encoded in the linear transverse momentum of single
photons. The single photon source is a continuous-wave laser, attenuated by an acousto-
optical modulator (AOM), calibrated such that the ratio of single-photon events is 82%.
The photons are sent through two spatial light modulators (SLM), which are two 32-by-32

transmissive squares, one of them modulating the amplitudes, the other one the phases.
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Case Optimal p
Q1024 0.515625
Q51202 0.500980
Q51202 0.500973
(@2)"° 0.500493
Q20512 0.500489
Clo24 0.500488

TABLE I: Relevant cases for a 1024-dimensional system and the respective optimal ASPs. The no-
tation Q4Qg corresponds to a product of quantum systems of dimensions d and d’. Cy corresponds

to a classical system of dimension d, and (Q2)'° corresponds to a product of 10 qubits.

FIG. 3: Experimental setup. At the state preparation block, the spatial encoding is applied through
two spatial light modulators (SLMs), and the state projection is likewise performed by an SLM

combined with an avalanche single-photon detector (APD) at the measurement projection block.

The state of the photon after the two SLMs is described by

32 32

) = <2 D0 3 Ve ), (119)

=1 v=1
where |¢,,) is the state corresponding to the square (spatial mode) (I, v), t;, and ¢y, are the
transmission and the phase-shift of the square (I, v), respectively, and C' is a normalisation
factor. Since in the experiment we have full control over the amplitudes and the phases,
this state is a completely general 1024-dimensional pure quantum state.

The measurement phase (“Bob”) is analogous to the state preparation. Since for the
ASP in Eq. (111) we need to employ rank-1 projective measurements corresponding to two
MUBs, M} = |m})(m}|, the task is to project onto the state |mj). We have chosen these
bases carefully such that in the computational basis each vector element has the same
amplitude. Therefore, in order to project onto any of these vectors, only a single SLM is
needed at the measurement side, adjusting the phases. This SLM projects the state onto
/mj), and we place an avalanche single-photon detector (APD) behind it. If this detector
detects a photon, we consider that it is successfully projected onto the state |m§), and

hence the outcome is “b”, otherwise it is not, and the outcome is “not b”.
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Notice that the outcome of this measurement is binary, while in the original QRAC
game the measurement needs to be d-outcome. In our case, a 1024-outcome measurement
would correspond to 1024 detectors, which is certainly not feasible, and therefore this
simplification was necessary. We have also adapted the ASP expression to this modified
experimental setup in the following way. Let us denote by X; the events when we are
projecting onto ]mf) and Alice’s setting is such that x, = b. Similarly, let us denote by
X5 the events when we are projecting onto |mz>, but x, # b. From the experiment, we are
able to count detection events in both cases, denoted by D; and Ds, respectively. Then,

we show that the modified ASP expression

Dy
s 120
P= D+ D, (120)

coincides with that of Eq. (84), under the assumption that Y, |my)(mj| =1 for y = 1,2.
Using the above figure of merit, we evaluated the experiment that was running for 316
hours at an experimental round rate of 60 Hz. This frequency required the automated
manipulation of the SLMs, performed by two field-programmable gate arrays (FPGA). The
large sample size allowed us to evaluate the experimental data with high precision, using
a Poissonian noise model on photon detection events. The results confirm an irreducible
photonic state and measurements of dimension 1024, certified by the ASP p = 0.515+0.008.
This is more than one standard deviation larger than the second largest ASP with total

dimension 1024, that is, the ASP corresponding to Q512Q2 (see Fig. 4).

0.5156 4 PO

I, B
0.50098¢ @ @ © @ o ¢ 0.515 e e e oo 'pQ.GlZ@QZ
3
kR 0.008 T
0.50048% = = = = = I mE®m ||pc1024

FIG. 4: Experimental results. We experimentally observe p = 0.515 £ 0.008, violating the sec-
ond highest ASP bound pg,,,20, (see Table I). The error bar is calculated assuming Poissonian

statistics for a photon detection event.
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B. Self-testing mutually unbiased bases in the prepare-and-measure scenario

1. State of the art and results

At the time of writing article [B], it was already known that in a 2¢ — 1 QRAC,

quantum strategies can achieve

b= % (1 4 ;&) (121)

by employing two measurements corresponding to MUBs [THMB15]. It was also a common
belief that this strategy is optimal, however, it was only proven for rank-1 projective
measurements [ABMP18|. It was neither clear whether this optimality holds for generic
POVMs, nor whether MUBs are the unique measurements achieving this ASP. Self-testing
in the prepare-and-measure scenario was also at its early stages, with only a single paper
addressing this topic [TKV*18], by analysing QRACs in dimension 2. However, higher
dimensional results were completely absent in the literature.

In our work B, me and my collaborator address the above issues. We prove that
indeed the ASP in Eq. (121) is the optimal quantum value using d-dimensional systems,
even if allowing for POVMs. Moreover, we also show that this value can only be achieved
by MUB measurements. Since different pairs of MUBs are not always equivalent up to
a unitary transformation [Bri09], this is not a self-test in the sense of Definition II.33.
Rather, it certifies a relevant property of the measurements, namely, that they correspond
to MUBs. Notably, our results are essential for the methods in [ABMP18| for solving the
long-standing problem of the number of MUBs in dimension 6.

Using our methods, we also provide robust certification schemes. Namely, we show that
even by observing a sub-optimal ASP, one can lower bound the entropy of the overlaps,
tr(A;B;), of Bob’s two measurements {4;}% ; and {Bj};l:p and also the sum of the op-
erator norms, >, |A4;| and >, |B;[. The former corresponds to a sort of unbiasedness of
the measurements, while the latter quantifies how close the measurements are to being
rank-1 projective. When an experimenter observes the optimal ASP, both of these quanti-
ties achieve their maximal possible values, which certifies a pair of MUBs. However, even
for sub-optimal ASPs, the experimenter can approximately characterise the measurements
using the above quantities.

Using these quantitative characterisations, we are also able to certify two other relevant
and operational properties of the measurements. Specifically, we derive a state-independent

lower bound on the uncertainty generated by the two measurements, based only on the
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QRAC ASP. Moreover, we provide bounds on incompatibility measures, again based only

on the ASP.

2. Technical details

In order to prove that Eq. (121) is an upper bound for the ASP even for POVMs, our

main technical tool is an operator norm inequality, proven by Kittaneh [Kit97].

Theorem III.3. Let A,B > 0 be operators on a Hilbert space. Then |A+ B|
max{|A], | B} + | VAVE].

Let us denote Alice’s input by 4,5 € {1,...,d} and her prepared states by p;;. Using

the above theorem, and the arguments in Proposition I1.32, we can bound the ASP as

2d22tr,0mA+B d22||A + By

(122)
< b 3 (max(14d 15,1} + H@@H) <zt

where we also used that |A;] < 1 and |B;| < 1 for all ¢,5. Then, using the fact that
|O| < |O| g, where |O] z = /tr(O10) is the Frobenius norm, we obtain

1 1 1 1 [>tr(4Bj) 1 1
< = 4 — AB)< -+ =2 " "1+ —) =7 12
PS5t aE 2 VIEAB) <5t & 2< +\/&> Po:  (123)

where we have used the concavity of the square-root. This concludes the proof that the
value in Eq. (121) is indeed a universal quantum bound for the QRAC ASP, even for
POVMs.

After this proof, we turn to the opposite question, that is, what can be said about
the measurements A and B, upon observing the optimal ASP. It is clear that all the
inequalities in Eqgs. (122) and (123) need to be saturated. This immediately implies by the

strict concavity of the square-root that all the overlaps need to be equal, that is,
1 .
tr(A;B;) = p Vi, j. (124)

It is also straightforward from the saturation of the last inequality in Eq. (122), that at

least one of the measurements, say A, needs to satisfy
Al =1 Wi, (125)

which in particular implies that A is a rank-1 projective measurement, that is, A; = |a;){(a;|
for some orthonormal basis {|a;)}%_;. The last step of the certification requires a technical

lemma.
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Lemma II1.4. Let A, B > 0 be operators on a Hilbert space. Then, the equality |A + B| =
max{| A, | BI} + |VAVE]| holds only if |A] = |BI.

Proof. See Ref. [B|. O

This lemma in particular implies that in order to saturate Kittaneh’s inequality in

Eq. (122), it is required that
|Ail = 185 Vi, J, (126)

and we have already seen that it is necessary that |A;| = 1 for all 7. That is, both A and
B need to be rank-1 projective measurements in order to achieve the optimal ASP. This
together with the overlap condition Eq. (124) implies that A and B correspond to a pair
of MUBs. Therefore, observing the optimal ASP certifies precisely that the measurements
of Bob constitute a pair of MUBs.

In order to make this certification robust, we define an approximate characterisation of
d-dimensional MUB measurements. While there is no such canonical characterisation, we

choose quantities that suit our certification schemes. First, we define the overlap entropy

<{Clltr(AiBj)}ij> , (127)

where H%({ql}z) = 2logy (ZZ \/cﬂ) is the %—Rényi entropy of the probability distribution

Hs(A,B) == H

=

{qi}i. It is easy to see that for d-outcome measurements in dimension d,
HS(Aa B) < 10g2(d2)7 (128)

and that MUBs saturate this bound.

It is also apparent that the overlap entropy alone is not sufficient for certifying MUBs.
For example, the trivial measurements A; = B; = g also saturate the bound in Eq. (128).
What is missing from this characterisation is to ensure that A and B are projective, which
together with the uniform overlaps implies that they are MUBs. To this end, we employ

the sum of the norms,
N(A) = A, (129)
i
and similarly for B. It is easy to see that for d-outcome measurements in dimension d,
N(A) <d (130)

and this bound is saturated if and only if A is rank-1 projective.
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In summary, if we certify that for A and B, Hg(A, B) is close to logy(d?) and N(A)
and N(B) are close to d, then the measurements are close to a pair of MUBs in the
sense that they are close to being rank-1 projective, and the overlaps are close to being
uniform. To certify these properties, we need to derive bounds on the above quantities, as
a function of the QRAC ASP. For the overlap entropy, this is a direct consequence of the
first inequality in Eq. (122). It immediately follows that if we observe the ASP p, then for

Bob’s measurements A and B it holds that
Hg(A, B) > 2log,[dVd(2p — 1)]. (131)

This bound is non-trivial as long as p > 3[1 + 1/(dV/d)], and the optimal ASP, p = po,
certifies that the overlaps are uniform. For a plot of the bound as a function of the ASP

in dimension 4, see Fig. 5.

Hs(A,B)
4_ — — — — — — — — — — — —
3,
27 d=4
1,
L L L L E
0.6 0.65 0.7 0.75

FIG. 5: Lower bound on the overlap entropy for p € [% + 5 dl\/g’ Po] in dimension 4.

In order to devise a similar bound on the sum of the norms, our main technical tool is

another operator norm inequality, proven by Kittaneh [Kit02].

Theorem III.5. For positive semidefinite operators A and B acting on a finite-

dimensional Hilbert space we have

A+ B < ; <\A|| + 1Bl + \/ (14] - |B1)> + 4 \)ﬂ@\f) . (132)

We introduce the quantities n;; := 1 — (| 4;| + |B;|) (norm deficiency) and s;; :=

H‘/Ai‘ /B H (generalised overlap), and using the above theorem and a technical lemma, we
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show that

_ 1 1

P<5+53 > sij — (2= V2)simg]. (133)

ij
In particular, this bound serves as an alternative proof for the certification of MUBs.
Note that omitting the negative term corresponds to n;; = 0, which in turn corresponds
to rank-1 projective measurements. In addition, we can bound s;; by \/‘m , which
immediately gives the bound in Eq. (123).
More importantly, the bound above allows us to bound the sum of the norms in terms

of the ASP. Namely, for p > py := % + ﬁ (d? — 1)d we can show that

N(A) > d— 2 Zﬂ (1- V- 12— (@ -1) (134)

and by symmetry the same bound holds for N(B). In particular, it is easy to see that the
optimal ASP, p = pg, certifies N(A) = N(B) = d, that is, that both measurements are
rank-1 projective. For a plot of the bound as a function of the ASP in dimension 4, see

Fig. 6.

N(A)
4_
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FIG. 6: Lower bound on the sum of the norms for p € (po, pg)] in dimension 4.

In summary, both the overlap entropy and the sum of the norms can be certified in a
robust manner from the observed QRAC ASP, and these constitute a robust certification
of MUB measurements.

Using these robust certificates, we are able to certify two additional relevant properties
of Bob’s measurements. The first such property is that of the entropic uncertainty of two
measurements. Let us denote the Shannon entropy of the outcome distribution of the

measurement A on the state p by H(A),, where the Shannon entropy of the distribution
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{@:} is defined as — ), ¢;log, ¢;. Maassen and Uffink provided a state-independent lower
bound on H(A),+ H(B), for two rank-1 projective measurements [MUS88|, and this lower
bound is the largest for a pair of MUB measurements. That is, MUBs are optimal projective
measurements for state-independent randomness extraction. The bound of Maassen and

Uffink was later generalised to arbitrary POVMs in Ref. [KP02], for which it reads
H(A),+ H(B), > —logyc, (135)

where ¢ := max;; H\/AZ-w / BjHQ. Therefore, in order to bound the entropic uncertainty of
Bob’s measurements, we need an upper bound on the generalised overlap, s;;. We are

able to derive such a bound using our techniques, and we obtain a bound on the entropic

uncertainty in terms of the QRAC ASP,

H(A),+ H(B), > —2log, <2p —1+ é\/d(dQ — 1)1 —d(2p— 1)2]>. (136)

The optimal ASP, p = pg, certifies log, d bits of uncertainty, which is the maximal value
attainable by a pair of d-dimensional projective measurements. For a plot of the bound as

a function of the ASP in dimension 4, see Fig. 7.

H(A), + H(B),

2_____________
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0.5

Y
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FIG. 7: Lower bound on the entropic uncertainty over the non-trivial region in dimension 4.

Finally, using our bounds, we are able to upper bound various incompatibility robustness
measures of Bob’s measurements in terms of the QRAC ASP. While we can obtain bounds
for different measures using the upper bounds in Ref. [C|, let me only present the bound
for the so-called “depolarising incompatibility robustness” measure, using the upper bound

from Ref. [DSFB19]. Since the analytic formula is rather complicated, let me present the
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bound in dimension 4 in Fig. 8, and let me remark that the optimal ASP, p = pg, certifies

the value of the incompatibility depolarising robustness, n* = \/\%il,

the MUB value.

which is precisely

0.9

0.8

0.7

0.747 0.748 0.749 0.75

FIG. 8: Upper bound on the incompatibility robustness over the non-trivial region in dimension 4.

In summary, our techniques allow us to certify a pair of MUBs in arbitrary dimension d
in a robust manner. Moreover, we are also able to robustly certify relevant properties of the

measurements, namely the entropic uncertainty and different incompatibility measures.
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C. Incompatibility robustness of quantum measurements: a unified framework

1. State of the art and results

At the time of writing article [C|, robustness based measures of incompatibility have
already been studied in the literature to a great extent (see Ref. [HMZ16| for an intro-
duction). However, their properties were not systematically analysed, and the study of
different measures usually appeared rather scattered in the literature. The question of
which measurements are the “most incompatible” (say, in a given dimension) has not been
addressed before either.

In our work [C], we address the above shortcomings by a thorough analysis of ro-
bustness based measures of incompatibility. We introduce a universal framework, that
associates with every well-defined noise model a robustness measure. We make explicit
connections between the properties of the noise models and the emerging properties of the
corresponding incompatibility measures. Then, we turn our attention to five commonly
used measures, that are all special cases of our generic framework. Using our framework,
we analyse the properties of these measures, and show that some of them do not satisfy
certain natural properties, and hence one should be cautious when using them. Then,
using techniques from semidefinite programming, we derive universal lower bounds and
measurement-dependent upper bounds on all the five measures.

We also compute the exact value of all the five measures for an arbitrary pair of rank-1
projective measurements on a qubit, and for pairs of MUBs in arbitrary dimension d.
Comparing these results with our universal bounds, we deduce that for one of the mea-
sures MUBs are among the most incompatible measurement pairs in every dimension d.
However, by finding explicit counterexamples, we also find that MUBs are not the most
incompatible pairs for two other measures. Therefore, we conclude that what constitutes
the most incompatible pair of measurements in general depends on the specific measure of

incompatibility.

2.  Technical details

Our universal framework for robustness based measures of incompatibility is based on

Definition 11.40, which I repeat here for convenience:

Definition IIL.6. Given two POVMs, {A.}04, and {By}.2, on C?, and a correspond-
ing noise set, Nap C POVM*"? such that N4pNIM*"P 2 0, we say that the
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incompatibility robustness 1’ 5 of the pair (A, B) with respect to this noise model is

= sw o {n|n(AB)+ Q-0 LN eIMPTE L (137)
n€lo,1]
(M,N)EN 4 B

map) - (M, N)

FIG. 9: Schematic representation of a generic incompatibility robustness measure for a closed and
convex noise set N4 p. Note that in general the noise set need not be contained in the jointly
measurable set JM. One can also easily infer that the optimal noise pair (M, N) must lie on the
boundary of N4 p and that the optimal noisy pair 0} g - (4, B) + (1 =7} g) - (M, N) must lie on
the boundary of JM.

We refer to the map N : (A, B) — Ny p as the noise model, and the set N4 p as
the noise set corresponding to the pair (4, B). By noting that the set JM}*"” is a
convex subset of the set of all POVM pairs POVMZA’TLB, these robustness based measures
can be interpreted geometrically, as depicted in Fig. 9. Also observe that according to
Definition IIL.6, the lower the value 7}y p is, the more incompatible the pair (A, B) is.

We are able to link some simple properties of the noise model to some desirable prop-
erties of the emerging incompatibility measures. In particular, whenever the noise set is
closed, the supremum in Eq. (137) is always achieved. Moreover, if the noise set is co-
variant under unitaries, that is, Ny apt ppyt = UNapU T, then the resulting measure is
invariant under unitaries, that is, 7, AUt UBUT = Ma.B-

On a more operational note, we would like our measures not to decrease under some
natural operations on POVM pairs that preserve joint measurability. In other words, such
“free” operations should not create more incompatible measurement pairs, a requirement
motivated by resource theories [CFS16, Fril7]. We consider two such natural operations:

post-processing and pre-processing.
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Post-processing corresponds to stochastically relabelling measurement outcomes, just

as in Eq. (32). More formally,

Definition IIL.7. A post-processing B maps {Aq},2, to {AS,}Z,/A;P where
na
Al =" B(d|a) A, (138)
a=1

and {B(d|a)}a is a probability distribution for every a € {1,2,...,n4}.

eah s

FIG. 10: Schematic representation of a post-processing of a measurement.

It is easy to verify that whenever (A, B) is jointly measurable, then so is (AﬁA, BPs),
where 84 and Bp are potentially different post-processing functions.
The second class of free operations is pre-processing, which corresponds to applying a

quantum channel AT on the quantum state before applying the measurement.

Definition III.8. A quantum channel is a completely positive trace preserving (CPTP)
linear map At : B(C) — B(CY). Complete positivity (CP) means that for every k € N,
k > 2 we have that

(At o) : B(C? o CF) - B(C? e CF) (139)

preserves positivity, whereas trace preserving means that for every p € B((Cd/), we have that

tr[AT(p)] = trp.

Formally one can think of this procedure as applying the dual channel A on the mea-
surement. The dual of a CPTP map as the one in the above definition is a CP-unital map,
that is, a CP map A : B(C%) — B(C%) such that A(I;) = Iy. With this definition, we can
define pre-processing only in terms of the measurement.

Definition II1.9. A pre-processing A maps {A,}'2, to {AM"4, | where

AN = A(Ay), (140)

and A : B(CY) — B(Cd/) is a completely positive unital map.
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FIG. 11: Schematic representation of a pre-processing of a measurement.

It is easy to verify that whenever (A, B) is jointly measurable, then so is (A%, BM),
where in this case we apply the same pre-processing to both measurements.

Therefore, from a meaningful measure of incompatibility, 17} g, we expect that it does
not decrease under pre- and post-processings. That is, if we denote a pre- or post-processing
as a map ® : (A,B) — ®(A, B), then ideally we expect that an,(A’B) > 1y p for all
pairs (A, B). Notably, we are able to verify whether this monotonicity property holds
for an arbitrary incompatibility robustness measure by looking only at the noise model.
Specifically, whenever it holds that ®(N4 5) C Ng(4,p) for all pairs (A, B), then it follows
that 7% 5 is monotonic under the operation .

Such monotonicity properties turn out to be crucial when looking for the most in-
compatible pairs of measurements. Specifically, if we are interested in what is the most
incompatible pair of measurements in a given dimension (regardless of the number of out-
comes) under a measure that is monotonic under post-processing, then the problem can
be significantly simplified. Notice that every POVM pair (A4, B) in dimension d can be
written as a post-processing of some rank-1 POVM pair (A’, B’) in dimension d. One
should simply consider the spectral decomposition of the POVM elements, i.e.

rank(Aq)

Ag = Z )‘Zza|agza><aga|7 (141)
Ja=1

and define the POVM A with elements
Ale = Nelode) (ade], (142)

where a =1,...,n4 and j, = 1,...,rank(4,). The POVM A is clearly rank-1, and using
a similar construction for defining B, it is immediate to see that (A, B) can be obtained
from ([l, B) via post-processing. If our measure of incompatibility is monotonic under
post-processing, then we have that 1727 B> 77}7 I and therefore when looking for the most
incompatible measurement pairs, it is sufficient to consider only rank-1 POVM pairs.
The last tool for finding the most incompatible measurements is to derive universal
(measurement independent) lower bounds on incompatibility robustness measures. In case

our measure is monotonic under post-processing, by the above argument it is enough
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to derive these bounds for rank-1 POVM pairs, as the bound will automatically apply
for all pairs. Our technical tool for deriving such bounds is semidefinite programming
[BV04]. Specifically, for a given POVM pair (4, B), the incompatibility robustness 7}

in Definition 11.40 corresponds to the optimisation problem

772,3 = sup
1{Gab}.{Ma},{Np}
s.t. n<1
Gawp >0 Va,b

14
Z Gapy =nAa+ (1 —n)M, Va (143)

b

> Gay=nBy+(1—mN, Vb

({Ma}av {Nb}b> €Nap.

For the noise models of interest, the supremum can be replaced by the maximum and
the last constraint can be written as a set of linear constraints, and therefore the above
optimisation problem is a semidefinite program (SDP). SDPs can be efficiently solved
numerically, which provides a useful tool for computing the incompatibility robustness of
a specific pair of POVMs. However, our main aim is to provide analytic bounds on 77:27 g for
every pair (A, B). To this end, we can still employ the SDP formulation given in Eq. (143).
Notice that any set of variables 1, {Gap}, {Ms}, { Ny} that satisfies all the constraints will
provide a lower bound on ?727 p- Therefore, in order to derive a universal lower bound on
an incompatibility measure, we need to find suitable variables 1, {Gg}, {M,},{Np} such
that 1 does not depend on the measurements (A, B), that give rise to universal bounds
Map 2 1

The most challenging part of finding such variables turns out to be to find suitable
parent POVMs {G,;}. That is, a collection of positive semidefinite operators that add up
to the identity, such that the marginal sums over a and b contain terms proportional to By

and Ag, respectively. To this end, we employ a generic ansatz
1 1 1 1
Gap X {Aa, Bb} + (chAa + BaBb) 4+ Yapl + (5(143 ByAZ + BbQ AaBbQ ), (144)

where ap, Ba, Yap and d are real parameters, and {A, B} = AB+ BA is the anticommutator
and A7 is the unique positive semidefinite operator such that (A%)2 = A. It is easy to
see then that >, G o I. Notably, when both A, and By are rank-1, then checking the
positivity of Ggp is also tractable. Since for post-processing monotonic measures, bounds

on rank-1 pairs of POVMs are universal, we are able to derive universal lower bounds on



71

such measures using the above ansatz. We take a similar approach to derive measurement-
dependent upper bounds on the robustness measures, by employing the so-called dual SDP,
and similarly introducing ansatz solutions.

Using our techniques, we investigate five measures that are widely used in the lit-
erature. These are all special cases of Definition I1.40, corresponding to different noise
models N giving rise to the noise sets N4 p. We analyse the monotonicity of each of these
measures under pre- and post-processing, derive universal lower bounds and measurement-
dependent upper bounds on them, and compute the exact value for d-dimensional MUB

measurements. Our findings are summarised in Table II.

Na.B Post|Pre Lower MUB value Upper
d—2+Vd2+4d—4 A —gd
nd {({trAa%}a,{ter%}b)} yes | no =) 74
' 1 T 1 1 3\t 1 Ay
AL AER) el s () | 20 ) [
A—gP
d ,r
P {({paﬂ}a, {a H}b)} yes max{n?, 7"} g
im JNAmS o 2V/d? 4 4d — 4 2(vV2-1) d=2|\—gim
K d Y 32 VP rad -4 (14 L) azs|f 9"
Vd
na,np 1 L A
ne POVM, yes 3 (1 + \/E> 7

TABLE II: Summary of the results on the depolarising (n?), random ("), probabilistic (nP),
jointly measurable (™), and general (n8) incompatibility robustness of pairs of POVMs. “Post”
and “Pre” stand for post-processing and pre-processing monotonicity, respectively. “Lower” and
“Upper” refer to lower and upper bounds on the specific measures, respectively. d is the dimension,
while n4 and np are the outcome numbers. The quantities X, f, ¢9, g%, g° and ¢gi™ are presented

in Eq. (145).

The quantities \, f, g9, ¢*, gP and ¢'™ are given by

tr A2 tr B?
A= { Sp (A, B}, - a b,
wp{msr o m} 1oL
tr A, \ tr By 2 1 1
d _ a b r_ - 4= 145
() () vt
tr A, tr B :
g = min ! —i—mbin%, and ng:migl{minSp(Aa—FBb)},

where Sp(A) is the spectrum of the operator A.

A simple observation from Table II is that the noise sets satisfy the inclusion relations

(N4 g UNY 5) C NP € NI, C B, (146)
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which implies an ordering on the incompatibility measures

max{n% g, M4 5} <M < Ths < Nip (147)

To demonstrate our techniques and the above relations, we analytically computed the value
of all five measures for a pair of rank-1 projective qubit measurements, as a function of
half of the Bloch sphere angle, 6, the results of which can be seen on Fig.12. From this
figure, the ordering of the measures as in Eq. (147) is apparent, as well as the observation

that for d = 2, MUBs are the most incompatible rank-1 projective qubit measurements.
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FIG. 12: The value of all the different measures for a pair of rank-one projective measurements
on a qubit such that the angle between the Bloch vectors of these measurements equals 26. Note
that the rightmost point, where § = 7/4, corresponds to qubit MUBSs, which demonstrates the
fact that MUBs are the most incompatible rank-1 projective qubit measurements under all these

measures. Although 9, ', and 7P coincide in this case, this is not the case in general.

Furthermore, from Table II we see that the depolarising incompatibility robustness, 19,
is not monotonic under pre-processing and that the random incompatibility robustness,
1", is not monotonic under post-processing. These we prove by providing explicit coun-
terexamples in Ref. [C]. Note that the non-monotonicity of n* under post-processing is
essentially the reason why we cannot find a lower bound for this measure that depends
only on the dimension. In particular, for this measure we show that in every dimension

one can construct measurements that reach n* = % by adding artificial extra outcomes that

never occur (which can be considered as a post-processing).
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It is also apparent from Table II that for the generalised incompatibility robustness, 12,
we have that MUBs are among the most incompatible pairs of d-dimensional measurements,
as they saturate the universal lower bound. We also find that they are not the unique most
incompatible pair. For example, if we split up one of the outcomes of a d-dimensional MUB,
A, — {%Aa, %Aa}, leading to a measurement with an extra outcome, this will still attain
the optimal value of n5.

Perhaps surprisingly, we find that MUBs are not the most incompatible pairs of d-
dimensional measurement pairs for the depolarising (n?) and the probabilistic (nP) incom-
patibility robustness measures, when the dimension is larger than 2. For the former, our
best candidate for the most incompatible pair is a pair of MUBs on a 2-dimensional sub-
space, where the remaining subspace is irrelevant. For the latter, we find a rank-1 projective
measurement pair in dimension 3 that is strictly more incompatible than both qutrit MUBs
and qubit MUBs embedded in dimension 3 in the above sense. For the jointly measurable
incompatibility robustness, 7™, we have not found any measurement pairs in dimension 3
that are more incompatible than MUBs, but also could not prove the optimality of MUBs.
To demonstrate our findings, let me present a plot of the values of the incompatibility
robustness measures 7%, "™, 7P and 4 on a continuous path that connects 3-dimensional
MUBs, (AMUB BMUB) "9_dimensional MUBs embedded in 3 dimensions, (A9MUB paMUB)
and the rank-1 projective pair conjectured to be optimal for nP, (A9¢¥, B®¥) on Fig. 13.

In summary, we have thoroughly analysed the above five measures, and could verify
or disprove certain natural properties. While for one of the measures we can prove that
MUBSs are among the most incompatible d-dimensional pairs, it is also apparent that this

is not the case in general.
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FIG. 13: The (numerical) value of the four measures along a one-parameter path of rank-one
projective measurements in dimension d = 3. Importantly, on this path the pair (AMUB BMUB)

achieves the minimum value for n8 and 7™, but it is outperformed by (A4¢Y, BeV) for P and by

(14qMUB7 BqMUB) for nd.
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IV. OUTLOOK

While the above results fill crucial gaps in the field of semi-device-independent certifi-
cation methods and measurement incompatibility, and significantly advance both of these
fields, we can by no means consider these topics completely understood. In this section,
I outline a few possible further research directions, stemming from, or related to the core

material of this thesis.

A. Experimental self-test of MUBs in the prepare-and-measure scenario

Since the certification methods we developed in Ref. [B| are robust to noise, they are
applicable to experiments. A natural continuation of this line of research is therefore to
perform such an experiment. In fact, this has recently been done by my collaborators with
whom I also worked together on the preparation of the article [A]. With my assistance
they adapted the theory to a quantum optical setup, using multi-core optical fibres. They
performed a 2* — 1 QRAC experiment with an average success probability high enough to
ensure that all the quantities appearing in Ref. [B| can be certified in the non-trivial region.
Together with the experimental team, we are in the process of writing up the findings of
the experiment, and the work should be available on the arXiv repository within a few

months.

B. Multi-input quantum random access codes

Both the works [A] and [B] employ 2¢ — 1 quantum random access codes in order to
certify high-dimensional quantum systems in the prepare-and-measure scenario. A natural
extension of this protocol is to provide the preparation side, Alice, with more than 2
inputs, and correspondingly Bob with more than 2 measurement settings. Such QRACs

d 5 1, and have already been studied, partially by myself

are sometimes denoted as n
[Farl7|. While these results are incomplete, it turns out that for n > 2, in general, different
equivalence classes of MUBs (sets that are not related by a unitary transformation) give rise
to different average success probabilities (see also Ref. [ABMP18]). Nevertheless, according
to numerical evidence, our best candidates for the optimal performance in these protocols
are still sets of n MUBs (whenever they exist). However, up to this date, there is no analytic

proof of this, even for the case of 33 — 1 QRACs. It would be an interesting further research

direction to investigate the optimal strategies in generic n® — 1 QRACs and whether it is
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possible to certify the optimal measurements (perhaps a specific equivalence class of MUB

n-tuples) in this scenario.

C. Semi-device-independent quantum cryptography

Certification schemes in quantum theory often lead to secure quantum key distribution
or random number generation protocols. In particular, the 22 — 1 QRAC was shown to
give rise to secure semi-device-independent quantum key distribution [PB11]. Given our
certification scheme for the general 2¢ — 1 QRAC in Ref. |B], it is a promising future
research direction to extend the methods of [PB11] and prove the semi-device-independent
cryptographic security of the 2¢ — 1 QRAC in arbitrary dimensions, potentially leading
to higher key rates than that of the qubit protocol.

Another research path in this direction is to further relax the SDI assumptions, and
devise certified quantum random numbers under certain plausible assumptions. This is
precisely what I have been working on in the last year with my collaborators from Vienna,
Brno and Bratislava. We have analysed a simple testable random number generator based
on a laser, a beam splitter, a movable shutter and a photodetector. Using techniques from
linear programming, we are able to bound the amount of certified randomness produced
by the device, under various levels of assumptions. We do not put any constraints on
the photodetector (as this is the most complex part of the setup), and provide bounds on
the randomness under the assumption of a single photon source, a known photon number
distribution, and a known mean value of photon numbers. We are already in the process
of writing up the findings of our analysis, and are working together with an experimental
team from Edinburgh to demonstrate the applicability of the device. The manuscript of

this work should be available on the arXiv repository within a few months.

D. Device-independent certification of mutually unbiased bases

While the semi-device-independent paradigm is experimentally much more feasible, it
is still of great interest whether generic d-dimensional MUBs can be self-tested in a Bell
scenario. With my collaborators, we have partially solved this question in our most recent
manuscript [TFR 19|, by devising a family of Bell inequalities that are maximally violated
by an arbitrary pair of d-dimensional MUBs. In the converse direction, the maximal
violation certifies an operational definition of mutual unbiasedness, that does not refer to

the Hilbert space dimension:
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Definition IV.1. We say that two d-outcome measurements {P,}¢_, and {Qb}gzl are

mutually unbiased if they are projective and the following implications hold:

(Y[FPaly) = 1= ($|@s|y) =
W]Qplp) =1 = (W[ Pulyp) =

IS S

, (148)

for all a and b. That is, two projective measurements are mutually unbiased if the eigen-
vectors of one measurement give rise to a uniform outcome distribution for the other mea-

surement.

It turns out that the maximal violation of the Bell inequalities introduced by us certifies
precisely the above property, that can equivalently be written using the algebraic relations

below.

Theorem IV.2. Two d-outcome measurements {Py}e_, and {Qp}i_, are mutually unbi-

ased if and only if
Py = dP,QyF, and Qv = dQyPaQy, (149)
for all a and b.

Naturally, any pair of d-dimensional MUBs satisfy the above criteria. However, it turns
out that mutually unbiased measurements (MUMs) in the above sense are strictly more
general than MUBs. In [TFR 19|, we prove that for d = 2 and 3, every MUM pair can be
written as a direct sum of d-dimensional MUB pairs. However, for d = 4 and 5, we provide
explicit examples of MUM pairs that cannot be written as a direct sum of d-dimensional
MUB pairs. Lastly, we provide a protocol for device-independent quantum key distribution

based on our Bell inequalities, with an optimal key rate of logy d bits.

E. Resource theory of incompatibility

While in our work |C] we study the monotonicity of incompatibility robustness measures
under pre- and post-processing, we do not address the question of a full resource theory.
That is, what are the most general, physically motivated operations that preserve joint
measurability? What are the measures of incompatibility that are monotonic under such
operations? Lastly, having answered these questions, can one define a resource theory of
incompatibility with a single most incompatible measurement pair? These questions have

been partially answered recently in Ref. [BCZ19|, by considering a set of operations that
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allow one to freely transform between all pairs of compatible measurements. The authors
also provide a complete set of incompatibility measures that are monotonic under these
operations, based on certain quantum state discrimination games. However, in this theory
it is unclear which incompatible measurement pairs can be transformed to which other ones,
and in particular, whether there exists a single most incompatible pair of measurements.
Therefore, investigating possible resource theories of incompatibility is still an open and

promising future research direction.
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We report on a new class of dimension witnesses, based on quantum random access codes, which are a
function of the recorded statistics and that have different bounds for all possible decompositions of a high-
dimensional physical system. Thus, it certifies the dimension of the system and has the new distinct feature of
identifying whether the high-dimensional system is decomposable in terms of lower dimensional
subsystems. To demonstrate the practicability of this technique, we used it to experimentally certify the
generation of an irreducible 1024-dimensional photonic quantum state. Therefore, certifying that the state is
not multipartite or encoded using noncoupled different degrees of freedom of a single photon. Our protocol
should find applications in a broad class of modern quantum information experiments addressing the
generation of high-dimensional quantum systems, where quantum tomography may become intractable.

DOI: 10.1103/PhysRevLett.120.230503

Introduction.—The dimension d of physical systems is a
fundamental property of any model, and its operational
definition arguably reflects the evolution of physics itself. In
quantum mechanics, it can be seen as a key resource for
information processing since higher dimensional systems
provide advantages in several protocols of quantum com-
putation [1] and quantum communications [2]. In the field of
quantum foundations, a recent proposal suggests that, in
order to understand and create macroscopic quantum states,
it will be necessary to take advantage of high-dimensional
systems [3]. Therefore, it is natural to understand why there
is a growing endeavor to coherently control quantum
systems of large dimensions [4-16]. Nonetheless, such
new technological advances require the simultaneous devel-
opment of practical methods to certify that the sources are
truly producing the required quantum states. In principle,
one can rely on the process of quantum tomography [17-23],
but this approach quickly becomes intractable in higher
dimensions as at least @> measurements are required [24].

To address this problem, the concept of dimension
witness (DW) was introduced. The original idea was based
on the violation of a particular Bell inequality [25] but was
then extended to the more practical prepare-and-measure
scenario [26]. In general, DWs are defined as linear
functions of a few measurement outcome probabilities
and have classical and quantum bounds defined for each
considered dimension [4,25-30]. Thus, they allow for the
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device-independent certification of the minimum dimen-
sion required to describe a given physical system and can
also infer whether it is properly described by a coherent
superposition of logical states. Nevertheless, these tests do
not provide information about the composition of the
system, which is crucial for high-dimensional quantum
information processing. This point has been recently
investigated by W. Cong et al. [31], where they introduced
the concept of an irreducible dimension witness (IDW) to
certify the presence of an irreducible four dimensional
system. Specifically, their IDW distinguishes whether if the
observed data are created by one pair of entangled ququarts,
or two pairs of entangled qubits measured under sequential
adaptive operations and classical communication.

Here, we introduce a new class of DWs, namely gamut
DWs, which certifies the dimension of the system and has
the new distinct feature of identifying whether any high-
dimensional quantum system is irreducible. It is based on
quantum random access codes (QRACSs), which is a
communication task defined in a prepare-and-measure
scenario [32]. To demonstrate the practicability of our
new technique, we experimentally certify the generation of
an irreducible 1024-dimensional photonic quantum system
encoded onto the transverse momentum of single photons
transmitted over programmable diffractive optical devices
[5,21-23,33-35]. To our knowledge, our work represents
an increase of about 2 orders of magnitude to any reported

© 2018 American Physical Society
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experiment using path qudits. From the recorded data, one
observes a violation of the bounds associated with all
possible decompositions of a 1024-dimensional quantum
system, thus, certifying that the generated state is not
encoded using noncoupled different degrees of freedom of
a photon, e.g., polarization and momentum. Nonetheless,
our method is broadly relevant and should also find
applications in multipartite photonic scenarios and new
platforms for the fast-growing field of experimental high-
dimensional quantum information processing.

Gamut dimension witness.—As stated earlier, the protocol
we use in our main theorem is based on QRACsS. Thus, first,
we give a brief description (see, e.g., [32] for more details) of
this task (see Fig. 1): one of the parties, Alice, receives two
inputdits: x; andx, € {1, ..., d}. Sheis then allowed to send
one d-dimensional (quantum) state, p, ., to Bob, depending
on her input. Bob is then given abity € {1, 2} and his task is
to guess x,. He does so by performing a quantum measure-
ment MY and a classical post-processing function D*. As a
result, he outputs b € {1, ..., d}.

For a single round of the protocol, the success
probability is P(b = x,|x;,x,,y). As a figure or merit
over many rounds with uniformly random inputs,
we employ the average success probability (ASP): p =
(1/2d%)y,, ., ,P(b = x,|x1, X, y). Thus, we are looking
for the maximal value of p, optimizing over all possible
encoding and decoding strategies. It was proven [36] that,
for classical strategies (i.e., classical states and decoding
functions), the optimal ASP is pc, =1(1+ 1/d). In the
quantum case, the optimal strategy is reached by using
mutually unbiased bases (MUBs) for encoding and decod-
ing [37,38], and the ASP is pgy, =1 (1 + 1/Vd).

Now, we estimate the optimal ASPs for composite systems,
for all possible product structures, defined as follows.

Alice
Bob

FIG. 1. Our d-dimensional QRACS scenario. Alice receives the
input dits x; and x, € {1,....d}, and prepares the state p, ,,
which is sent to Bob. He receives the input y € {1,2}, which
defines the quantum measurement M” and the classical post-
processing function D’ to be applied to py,,,. As a result, Bob
outputs b.

Definition 1.—For a fixed d, we define a product
structure by the set {r,{d;}.{a}}. For a composite
system, d = [[;_, di, where d; is the dimension of each
subsystem and r is the number of subsystems. The state of
the composite system can be written as p = p}, ® p2 ®
-+ @ pq,. Here, a; = c and o} = q are used to denote the
“classical” and “quantum” nature of the subsystem, respec-
tively. Then, pf € A, _, is a classical state, and pf €
S(C%) is a quantum state.

Consider a set of measurement and state preparation
settings and fix the total dimension of the physical system
in question. We call a linear function on the measurement
outcome probabilities a gamut dimension witness (GDW) if
its extremal values for all possible product structures are
different. For example, in d =4, a GDW has different
extremal values for a ququart, two qubits, one qubit and a
bit, and a quart. The main theoretical result of this work is
to demonstrate that d-dimensional QRACs can be used as
GDWs for d-dimensional physical systems. To highlight
this, we set it as a theorem.

Theorem 1.—d-dimensional QRACs serve as gamut
dimension witnesses using the ASP function.

The proof of this theorem and all related lemmas can be
found in the Supplemental Material [39]. Let us now sketch
the main tools for proving the theorem. They help to
understanding the problem, and can be independently used.
Note that the following lemmas apply in more general
QRAC scenarios as well [39].

We assume that Bob’s measurements have the same
product structure as the state generated by Alice. That is,
we exclude that Bob’s state certification would use entan-
gling measurements. The motivation here is to rule out
sequential uses of lower dimensional systems as a way to
simulate higher dimensional statistics, e.g., to discriminate
between n sequential uses of a d-dimensional system, and a
d"-dimensional system. A physical motivation for this
assumption is to think that, if Alice cannot couple a
particular set of degrees of freedom (e.g., polarization
and momentum), then neither can Bob because he has
access to the same equipment as Alice does [43].

Therefore, the most general strategy for decoding the
d-dimensional system p =p' ® p> ® --- ® p” is as fol-
lows: Bob performs sequential adaptive measures on the
subsystems in the sense of [31]. He starts by measuring
subsystem p' to obtain the outcome b'. Then, his choice of
the measurement to be performed in p> may depend on b'.
Successively, each measurement on p* can depend on all
the measurement outcomes obtained previously. After
performing all measurements, Bob feeds the obtained
outcomes to a classical post-processing function and out-
puts his final guess on x,, which is b = D”(b'b%, ..., b").

The bounds of the GDW in this general scenario are
extremely hard to obtain. The following results help,
making the analysis easier. First, it is argued in [32] that,
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in an optimal strategy, it is enough to use encoded pure
states. Similarly, it has been shown that rank 1 projective
measurements (explicitly: mutually unbiased bases) opti-
mize two-input QRACs [38]. Thus, in the following, we
only deal with pure states for both Alice and Bob.
Additionally, we can eliminate classical post-processing
functions.

Lemma 1.—In QRACS, for optimality of the ASP, there
is no need for classical post-processing functions.

Last, we note that:

Lemma 2.—In QRAC:sS, for optimality of the ASP, there
is no need for sequential adaptive measurements.

Observe that the above lemmas together imply that the
highest ASP for a composite system can be achieved with a
strategy that consists of » QRACsS in parallel, one on each
subsystem p*, independently. In this case, if we write Alice’s
inputs as dit strings x, = x}x7, ..., x}, the success proba-
bility for each round is P(b = x, |x, x5, y) = [[;_, P(b* =
x§|x'f, x%,¥). The optimal p is not necessarily given by the
independent optimal strategies on the individual subspaces.
Therefore, in order to optimize it we introduce the trade-off
function M,(z) (see the Supplemental Material [39]),
which provides the optimal probability of guessing dit x,
given a fixed probability of guessing dit x;. Let z =
P(Bob correctly guessesx;). Then, M ,(z) in dimension d
is defined by M ;(z) =max{P(Bobcorrectly guessesx, )|z},
where the maximization is limited to all encoding-decoding
strategies respecting the condition of guessing x; with
probability z. Thus, in a general case,

1
= max E[Zl g MG () MG ()], (1)
- ZV r

......

p Q4y----Cy,

where we denote d-dimensional quantum and classical
states by Q, and Cy, respectively. MY and M are the
corresponding quantum, and classical trade-off functions
[39]. Therefore, p is a function of r real variables, and its
maximum can be found using standard heuristic numerical
search algorithms [44]. We present the ASP optimal values
for some relevant cases of ad = 1024 dimensional system in
Table L. The full list of cases is found in the Supplemental
Material [39]. Note that the gaps between the different ASP
values are large enough to be experimentally observed, as
we demonstrate next.

Experiment.—To demonstrate the practicability of our
technique, we generate a 1024-dimensional photonic state,
encoded into the linear transverse momentum of single-
photons, and use the 1024-dimensional QRAC GDW to
certify that it is an irreducible quantum system. To achieve
this, first, we show that the ASP [Eq. (1)] can be written as a
simple function of the detection events. Then, we observe
that our recorded statistics violate the second highest ASP
bound, Q51, 05, given in Table I, thus, ensuring that it is an
irreducible 1024-dimensional quantum system.

In the 1024-dimensional QRAC GDW, Bob measures
the elements of the two 1024-dimensional MUBs given in

TABLE I. Relevant cases for a 1024-dimensional system and
the respective optimal ASPs [Eq. (1)] considering each product
structure. The full table can be found in the Supplemental
Material [39].

Case Optimal p
Qo2 0.515 625
05,0, 0.500 980
051,C, 0.500973
03,05 0.500 521
(0,10 0.500 493
0,Cs1» 0.500 489
Ciooa 0.500 488

the Supplemental Material [39]. We denote the MUB states
by |m7), where y = 1, 2 defines the measuring base MUB,
or base MUB,, and j =1, ..., 1024 denotes the state of a
given base. Alice’s state is written in terms of the two input
dits x; and x, as an equal superposition of the states Bob
would need to guess x, correctly

1

W) = 5 (s, )+ sen((my, i, )lms,), - (2)

where N = |/2(1 + %) is a normalization factor and sign

is the sign function. The optimality of the encoded states
(2), and the use of MUBS is derived in the Supplemental
Material [39].

For the experimental test, we resort to the setup depicted
in Fig. 2. At the state preparation block, the single-photon
regime is achieved by heavily attenuating optical pulses
with well calibrated attenuators. An acousto-optical modu-
lator (AOM) placed at the output of a continuous-wave
laser operating at 690 nm is used to generate the optical
pulses. The average number of photons per pulse is set to
u = 0.4. In this case, the probability of having non-null
pulses is P(n > 1|u = 0.4) = 33%. Pulses containing only
one photon are the majority of the non-null pulses
generated and accounts to 82% of the experimental runs.
Thus, our source is a good approximation to a nondeter-
ministic single-photon source, which is commonly adopted
in quantum communications [2].

The single-photons are then sent through two spatial light
modulators, SLM1 and SLM?2, addressing an array of
32 x 32 transmissive squares. The square side is a =
96 ym and they are equally separated by 6 = 160 um
[see Fig. 2(b)], thus, effectively creating a 1024-dimensional
quantum state defined in terms of the number of modes
available for the photon transmission over the SLMs [5,21—
23,33,34]. Specifically, the state of the transmitted photon is

. Iy, Iy, i

given by |¥) = (1//C) l}\:L_lNL Z,"A:’_IN' T eite|c,),
where |c;,) is the logical state representing the photon
transmitted by the (I, v) square. 7, represents the
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FIG. 2. (a) Experimental setup. We employ a prepare-
and-measure scheme to generate and project spatial qudits,
encoded into the linear transverse momentum of single-photons.
At the state preparation block, the spatial encoding is applied
through two spatial light modulators (SLMs), and the state
projection is likewise performed by a SLM combined with a
pointlike avalanche single-photon detector (APD) at the meas-
urement projection block (see main text for details). (b) The
32 x 32-square mask addressed by the SLMs.

transmission and ¢;, the phase-shift given by the (I, v)
square. The transmission of each square is controlled by the
SLM1, which is configured for amplitude-only modulation.
The phases ¢;, are controlled by SLM2 working on the
configuration of phase-only modulation [22]. N. and N,
represent the number of columns and rows, respectively. For
simplicity, we define Iy = (N, —1)/2, Iy, = (N, - 1)/2,
and C is the normalization factor.

At the measurement block, we use a similar scheme to
the one used in the state preparation block. It consists of a
SLM3, also configured for phase-modulation, and a
“pointlike” avalanche single-photon detector (APD). As
explained in detail in [5,22], by placing the pointlike APD
at the SLM3 far-field (FF) plane, and properly adjusting the
(I, v) square phase shifts, Bob can detect any state |m;)
required for the 1024-dimensional QRAC session. The
pointlike APD is composed of a pinhole (aperture of 10 xm
diameter) fixed at the center of the FF plane, followed by
the APD module. In this case, the probability of photon
detection is proportional to the overlap between the
prepared and detected states. For the case of a d-dimen-
sional QRACs implemented with a single-detector scheme,
we show in the Supplemental Material (see [39] and
Refs. [4,5,9,13] therein) that the ASP function can be
written as

D,

—_— 3
D, + D, ®)

b=
First, we consider the events with x, = j (again, j =

1,...,1024 denotes the state of a given base) and define
the total number of such events to be X;. Then, we define

Dy as the number of "clicks" recorded in the experiment in
those cases. Likewise, we denote X, to be the number of
events where x, # j and define D, to be the clicks in
those cases.

By means of two field-programmable gate array (FPGA)
electronic modules, we are able to automate and actively
control both blocks of the setup. At the state preparation
block, since the state |¥) needs to be randomly selected
from the set of states defined by the 1024-dimensional
QRACsS, a random number generator (QRNG-Quantis) is
connected to FPGA1. FPGA1 controls the optical pulse
production rate by the AOM, set at 60 Hz as limited by the
refresh rate of the SLMs. Each attenuated optical pulse
corresponds to an experimental round. At the measurement
block, a second QRNG is connected to FPGA2, providing
an independent and random selection for the projection
lm}) at each round. FPGA2 also records whether a
detection event occurs. The overall detection efficiency
is 13%. The protocol is executed as follows: In each round,
FPGAI1 reads the dits x; and x, produced by its QRNG.
Then, FPGA1 calculates the amplitude and phase of each
(1, v) square of SLM1 and SLM2 to encode the state |¥, .,)
onto the spatial profile of the single-photon in that
experimental round. Simultaneously, FPGA2, reads from
its QRNG the value of y and j. Similar to what is done in
the state preparation block, FPGA2 also calculates the
phase for each (I, v) square in SLM3 to implement the
chosen projection |m§ }. The amplitude and relative phase
for each SLM was previously characterized in order to
obtain the modulation curves as a function of its grey level.
In this experiment, this is necessary to dynamically gen-
erate all possible states, as it would be unfeasible to
prerecord predefined masks for the SLMs on the FPGAs
for each one of the 10242 required initial states.

The experiment continuously ran over 316 hours. In this
way, the statistics fluctuations observed for D, and D, were
sufficiently small to unambiguously certify the generation
of an irreducible 1024-dimensional quantum system. The

0.5156 ‘I’ ﬁszx

0.515

I

0.500984 o o o ® e o0 D000,

0.008

0.50048% = = = = = " e i,

FIG. 3. Experimental results. We experimentally observe
p =0.515+0.008, violating the second highest ASP bound
Dosp00, (see Table I). The error bar is calculated assuming
Poissonian statistics for a photon detection event.
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overall visibility in our system is 97.00 4= 0.07% and the
corresponding recorded average success probability is
p=0.515+0.008. In Fig. 3, we compare it with the
second highest ASP bound shown in Table I, associated
with a composite system of the type Qs1,Q,. This certifies,
only from the statistics recorded, that the generated state is
not encoded using noncoupled different degrees of freedom
of a photon, for instance polarization and momentum, thus,
ensuring it to be an irreducible 1024-dimensional quantum
system that can provide all the advantages known for high-
dimensional quantum information processing, in the sense
explained in [31].

Conclusion.—Dimension witnesses are practical proto-
cols on the field of quantum information as they allow one to
obtain information regarding unknown quantum states
[25,26]. They are especially appealing while addressing
the generation and characterization of high-dimensional
quantum states, where quantum tomography demands at
least d*> measurements [24]. In general, DWs are functions of
only a few measurement outcome probabilities and allow for
assessments on the dimension required to describe a given
quantum state in a device-independent way [4,25-30]. Here,
we give a step further by introducing a new class of DW,
which certifies the dimension of the system, and has the new
distinct feature of allowing the identification of whether a
high-dimensional system is irreducible. The application of
this new feature is of broad relevance for several new
architectures aiming for high-dimensional quantum infor-
mation processing [4—16], and the understanding of macro-
scopic quantumness [3]. We demonstrate the practicability
of our technique by using it to certify the generation of an
irreducible 1024-dimensional photonic quantum state
encoded into the linear transverse momentum of single-
photons transmitted by programable diffractive apertures
which have been used for several high-dimensional quantum
information processing tasks [5,35,45-47].
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The supplemental material is organized into two sections: Theory (S1), and Experimental Considerations (S2).

The theoretical section makes all the formal definitions and provides the proofs of Theorem 1, Lemma 1, and Lemma 2 of
the main text. We further clarify Equation (1) of the main text, as well as showing the explicit form of the trade-off functions.
The theoretical section ends with two examples. In particular we calculate a table of all of the possible quantum partitions for
d = 1024 as direct proof that indeed: Q1024 > Q512Q2 > “all other partitions”. (Table S2)

The experimental section explicitly show the representation of the MUBSs that were used in the experiment. We also formalize
the single-detector scheme, and explain how the figure of merit (Equation (3) of the main text) is derived. Finally, we show how
this figure of merit depends on the overall detection efficiency v and average photon number per pulse .

S1. THEORY
S1.A. Formal Definitions and Problem Formulation

We begin by defining n® — 1 Random Access Codes (RACs) rigorously. RACs is a strategy in which Alice tries to compress
an n-dit string into 1 dit, such that Bob can recover any of the n dits with high probability [1]. Specifically, Alice receives an
input string © = z23...x, drawn from a uniform distribution, where z; € [d], with [d] = {1,2,...,d}. Note that in the
special case of the main manuscript, we always use # = x;x2. She then uses an encoding function & : [d]* — [d], and is
allowed to send one dit a,, = £(x) to Bob. On the other side, Bob receives an input y € [n] (also uniformly distributed), and
together with Alice’s message a, uses one of n decoding functions DY : [d] — [d], to output b = D¥(a,) as a guess for x,,.
If Bob’s guess is correct (i.e. b = x,) then we say that they win, otherwise we say that they lose. We can then quantify their
probability of success P(DY(E(x)) = =), which in general depends on their inputs and on the chosen strategy (£, D), where
D={D};_;.

Similarly, one defines the d-dimensional n¢ — 1 Quantum Random Access Codes (QRACs) with the only change being that
Alice tries to compress her input string into a d-dimensional quantum system (see Fig.S1). Alice encodes her n-dit string via
£ : [d]* — S(C?), and sends the d-dimensional system p, = £(x) to Bob. He then performs some decoding to output his guess
b € [d] for x;,. The decoding function is a quantum measurement followed by classical post-processing, as we clarify next.

Definition S1.1
A quantum decoding strategy is D = {{M}'};, DY }::1, i.e. n pairs of measurement operators { M}, (normalized y, M} =
1Yy, and positive semi-definite M/ > 0V1,y), and classical post-processing functions DY : [d] — [d], such that if Bob receives
as input p, and y, he outputs b = DY (1) with probability tr[p, M}).

To quantify the performance of a given encoding-decoding strategy, we shall employ the average success probability (ASP) p
as our figure of merit.

Definition S1.2
The Average Success Probability of a given encoding-decoding strategy (£, D) is:

1
ﬁ:WZP(B:xy\X:x,Y:y), (S1)
z,y

* These authors contributed equally to this work.



Alice
Bob

FIG. S1: d-dimensional 2¢ — 1 QRACS scenario, which is the one considered in the main manuscript. Alice receives the input
dits 21 and z2 € {1,...,d}, and prepares the state p,,,, which is sent to Bob. He receives the input y € {1, 2}, which defines
the quantum measurement /¥ and the classical post-processing function DY to be applied to p,, 4,. As a result, Bob outputs b.

where uppercase letters X, Y, B denote random variables, while the corresponding lowercase letters represent the events (i.e. the
values the random variables can take). Another useful way of understanding the ASP is by viewing the whole QRAC protocol
as a game and thinking of the ASP as the probability that Alice and Bob win any given round. Loosely speaking:

p = P(B = correct). (82

Nonetheless, the real object of interest is the optimal average success probability, which corresponds to the maximal value of p
taken over all possible encoding-decoding strategies. Explicitly:

1

PCQua = e ;P(B =1,|X =2,V =y), (S3)

with C and @) respectively representing the classical and quantum scenarios.

Definition S1.3

For a fixed d, we define a product structure by the set {r,{dy},{ow}}. For a composite system, d = [} _, di, where dj,
is the dimension of each subsystem and r is the number of subsystems. The state of the composite system can be written as
p = p}ll ® piz ® -+ @ pg,. Here, ap = c and ay = g, are used to denote the “classical” and “quantum” nature of the
subsystem, respectively. Then, pF € Ag, —1 is a classical state, and p’; € S(C%) is a quantum state.

We are now in a position to formally pose the central question of this paper. Suppose Alice creates states of dimension d with
a certain product structure, i.e. she creates the state p = P}n ® piz ® -+ ® pg,.- When dealing with separable states, it is easier
to speak as if the information was encoded into distinct non-interacting physical systems. Of course it could equivalently be
the case that there is only one physical system with non-interacting degrees of freedom creating the abstract separable structure,
but for the sake of clarity we will keep the first picture in mind. This may be viewed as adding constraints to Alice’s possible
encoding functions £.

We must further assume the same constraints on Bob’s measurements. This might seem arbitrary, as we are only interested in
the nature of the prepared state. Nevertheless, one can argue that if e.g. Bob is allowed to perform “entangling” measurements,
this device might as well be located in Alice’s lab, allowing her to prepare an arbitrary entangled state which does not respect the
original constraints. That is, we are interested in the scenario where both Alice and Bob have the same technological equipment
at their disposal, as is the case in experiments [2]. We remark that this assumption was also used to prove robustness in [3].
Table S1 gives an example of different product structures if r < 2.

Our main theorem states that the optimal ASPs of QRACs serve as a tool to differentiate these product structures. For
convenience we also restate it here.

Theorem 1 (Main theorem) d-dimensional 2% — 1 QRACs serve as gamut dimension witnesses using the ASP function.

The rest of this section is dedicated to proving Theorem 1.



Case Constraints on £, and D
Fully Quantum (No Constraints)
Qdydy .
p € S(CY)
Separable Quantum States
Qu, Qas p=py®p;

Py e S(Ch) . pheS(C™)
Classical Quantum

Qa, Cay p=ps®p2

ps € S(CM), p? € Agy—1
Classical Quantum

Ca, Qag p=pt®p;
P}; S Adl—l’ Pg < S(CdQ)
Classical
Cdld2 assical
pE Ad1d2_1

TABLE S1: Example of Alice’s possible product structures, if the dimension d = d;ds factorizes and r < 2. We assume that
the measurement D has the same product structure as the encoding £.

S1.B. Proofs of Lemmas 1 & 2

We will show how to transform from the most general setup from Fig. S2(a), into the setup of Fig. S2(b). In order to do
this, we restrict the encoding function to only pure states (the optimality of which is demonstrated in Ref.[1]), the measurements
to be projectives (shown optimal for our case in [4]), and prove two lemmas that show that both (1) classical post-processing
fudnctions, and (2) sequential adaptive strategies, are all unnecessary on Bob’s side. Note that these lemmas apply in the general
n® — 1 case.

(@ (b)

FIG. S2: (a) A generic QRAC with a product structure. (b) A simplified version using Lemmas 1,2.

The first simplification we make is to show that the optimal quantum strategy does not require classical post-processing
functions DY. That is, Bob’s output b can simply be read out from his quantum measurements. This is typically assumed in all
QRAC papers (e.g. [1, 5]) but without proof.

Lemma 1
Given a quantum decoding strategy ({ M/}, DY) with average success probability p, there exists another quantum decoding
strategy ({M}}1, D) with average success probability p > p and with trivial classical post processing D, = id.

Proof of Lemma 1 Let p,, = E(z) be the states which achieve the optimal average success probability p. Then Eq (S1) can be
expressed as:

o Sle 3 . =

z,Y k:Dy (k)=



Now, let us define new operators:
M= > M. (S5)
J:Dy )=k

We can now use the same encoding states py, ...z, and write the original average success probability in terms of the new
operators:

S [pm;fy] . (S6)

zy

p= ndn

Since we used a fixed encoding strategy and have a new decoding strategy, in principle we could have p > p after further
optimization. Also, we see in Eq (S6) that there is no need for explicit classical post-processing (i.e. Dy(k) = k). Thus,
hereafter, quantum decoding strategies will simply be written as {]W;’ Yo, since they will directly output the guess b.

Therefore, the most general allowed measurement strategy is:

Definition S1.4

Assume that Bob receives r states from Alice: p = p}n ® /’32 ® -+ ® pg, (in fact, by [1] these could be assumed to be pure
states), where each p, € S(C%) and d = dydy - - - d,. By Lemma 1, let the measurement outcome of pl, be b* € {1,2,...,d;}.
We call a sequential adaptive strategy any scheme where Bob uses previous measurement outputs to determine the measurement
basis of future states. That is, when measuring the state p{h, the basis { M} LR }7;1 could depend on the previously
measured systems.

This scenario is problematic, since optimizing sequential adaptive quantum strategies turns out to be extremely complicated
in general. One of our main technical contributions is to show that they are not necessary for optimality.

Lemma 2
There exists an optimal strategy that does not use sequential adaptive measurements.

Proof of Lemma 2 Let’s assume we have a strategy that uses sequential adaptive measurements. Fix the choice of all encoded
states and measurements. Then, we show that there exists a strategy without sequential adaptive measurements, that gives at
least as high average success probability, as the original one. To show this, let us write the average success probability for the
mentioned sequential adaptive strategy as:

_ 1 I T
p:ﬁZP(Blzx;,BQZmz,---,B =1 | X=2Y=y)
@y

1 -
=5 Z]P’(B1 = correct, B*> = correct,--- , B" = correct | X = z,Y =y)
@,y
= IP(B' = correct, B? = correct,--- , B" = correct) (87)

=P(B" = correct | B! = correct,--- , B = correct)P(B""! = correct,--- , B!

1
=...= H P(B* = correct | B¥~! = correct,--- , B* = correct),
k=r

= correct)

where we used the definition of conditional probability multiple times. By construction, B¥ can only depend on such B's that
j < k. Now, we can use the fact, that the conditional probability is again a valid probability measure, thus we can apply
completeness of probabilities. Let us denote [ [, P(B* = correct | B*~* = correct,- - , B* = correct) = P™. Then

p="P> ~]P’(B2 = correct | Bl = correct)]P’(B1 = correct)

[
= P3(ZIP’(B2 = correct | B! = correct, B! = s)P(B' = s | B! = correcz‘))]P’(B1 = correct) o
s=1 ( )

dy

=p3 ( ZIP’(B2 = correct | B! = correct, B!
s=1

I

&

=

@,
|

=s,B' = correct)).



We see that the events (B! = correct) and (B? = correct) are independent when conditioning on the value of B, i.e.
P(B? = correct, B = correct | B! = s) S9)
= P(B' = correct | B = s)P(B? = correct | B! = s),

forany s € {1,...,dy}. This is because if we condition on the value of B', we fix all the states and measurements (remember
that the strategy is fixed, and the only freedom is in the choice of measurement basis on qudit 2 (see Fig. S2(b))). Then, since
our qudits are in a product state, their outcomes are independent.

From equation (S9) it follows that

P(B? = correct | B! = correct, B! = s) = P(B? = correct | B! = s), (S10)

and thus

dy
p= 73'3<2:]P’(B2 = correct | B = s)P(B' = 5, B! = correct))
Sdzl (S11)
< P3<ZIP(B2 = correct)P(B' = s, B! = correct)) = P3.P(B? = correct)P(B" = correct),
s=1

where P(B? = correct) = mMaXse(1,....dy} P(B? = correct | BY = s), i.e. we choose the measurement basis which gives the
greatest success probability for qudit 2, hence eliminating adaptiveness on this qudit. Now, we use the same reasoning in order
to get rid of adaptiveness on consequtive qudits. We show that this indeed works on qudit 3, and then the idea generalizes
trivially. At this point, we have that

p=P*-P(B* = correct | B*> = correct, B! = correct)P(B?* = correct)P(B' = correct)

ds ds
= P4(ZZIP’(B3 = correct | B? = correct, B' = correct, B> = 5, B! = 1)
s=1t=1
x P(B% = s | B?> = correct)P(B' =t | B! = correct))IP’(B2 = correct)P(B! = correct) (S12)
dy d
= P4(ZZP(B3 = correct | B? = correct, B = correct, B> = s, B! = t)
s=1t=1

x P(B% = s, B2 = correct)P(B' = t, B! = correct))

(here, we implicitly used the already proven fact that qudits 1 and 2 are independent of each other). Now the conditional
independence goes as

P(B? = correct, B? = correct, B = correct | B?> = s, B! = t)

(S13)
= P(B? = correct | B® = s, B = t)P(B? = correct, B! = correct | B = 5, B! = t),
since fixing all measurement bases yields independent outcomes. From this it follows that
P(B® = correct | B* = correct, B" = correct, B> = s, B = t) = P(B® = correct | B* = s, B" = 1), (S14)
and thus
dy dy
p= P4(Z ZIP’(B3 = correct | B? = s, B! = t)P(B? = s, B = correct)P(B' = t, B' = correct)
s=1t=1
dy dy 15
< P4<Z Z[F’(B?’ - correct)IP’(BZ -5, B%= correct)IF’(Bl —t B = Correcz)>
s=1t=1

=P*.P(B? = correct)P(B* = correct)P(B" = correct),

where P(B® = correct) = MaXse(1,....ds} P(B3 = correct | B? = s, B = t), meaning that we choose the measurement basis
te{l,...,d1 }
that gives the greatest success probability on qudit 3. It is clear now that this reasoning applies for all qudits and thus

1
p= H P(B* = correct), (S16)
k=r

and it is a non-adaptive strategy.



S1.C. Trade-Off Functions

The usefulness of non-adaptive strategies is that in essence, Alice and Bob are playing 7 QRAC:s in parallel (see Fig. S2(b)).
However, the optimal average success probability is not necessarily given by the independent optimal strategies on the individual
subspaces. This is easily understood when one remembers that the winning condition is that b = x,, as a whole, and no “partial
points” are awarded if only a part of the string is guessed correctly. Before proceeding, it is illustrative to look at the ASP once
again, but written in the following way:

i
Il

{;2 <Z P(B =21|X = z122,Y = 1)) + % (Z P(B = 23|X = 3129,V = 2))]

T1,To2 T1,T2

(S17)

N = N =

[P(Bob correctly guesses ;1) + P(Bob correctly guesses )],

where we have defined P(Bob correctly guesses ) as the average probability of success, if the y-th dit is asked. Let us remark
that these probabilities are not independent and are clearly strategy dependent. It is this first dependency that will be our object
of study:

Definition S1.5
Let z = P(Bob correctly guesses x1). Then we define the quantum trade-off function M’(z) in dimension d as:
Mi(z) = e r{r}\eﬁc} ){P(Bob correctly guesses x2)|P(Bob correctly guesses x1) = z}, (S18)
AMPh

where the maximization is limited to all quantum encoding-decoding strategies which respect the condition of guessing x1.

In fact, one could formally write the optimal ASP in terms of the trade-off function as:

1
Do, = max [z 4+ Mj(2)]. (S19)
z€[4.1] 2

We will devote a later Lemma (3) to investigating the functional form of the quantum M. For now, we return to the problem
of the 7 QRACsS in parallel. When writing out the average success probability, we have to calculate the probability that Alice
and Bob win given inputs z1, z2, y. That is,

Y Yy
T
: (S520)
= H P(B* = Tﬁ‘X =x120,Y = y).
k=1
The first equality is just expanding the dits into r substrings (B = B'B?... B" and x,, = 2«7 . . . ). To obtain the second

equality, we use the fact that the QRACs are independent. According to Lemmas 1 and 2, Bob will use identity decoding on
each measurement and output b = b'b2...b" as a guess for z,,. This in turn implies that the kth information carrier only has
information about z¥ and z%, i.e. P(B* = :cf/\X = 212, Y = y) only depends on z¥ and z§.

Hence, let us define ‘

1 . ok  k
P(Bob correctly guesses x’;) = ZAE Z P(B* = x’;|X" =kl vy =y). (S21)

o, xk €[dk)
Then, Alice and Bob are trying to maximize the following global expression:

_ 112 r 1 2
= max — 2tz 2" ML MY (22 ME (2] . S22
PQa,Qa,--Qa, z1€[d‘1>1]7z2€[d‘271]7----,2*6[;,,.‘1] 2 [ dl( ) dg( ) dT( )] ( )

By optimizing (S22) , we are able to calculate the average success probability for separable states, and compare it to the
optimal average success probability of (S19). We now turn to showing the form of M (z).



Lemma 3
The following are equivalent forms of M&(z):

2
d—1 1-
MZ(Z)zl—(—d )(ﬁ— d_j) : (823)

€
Vd

Furthermore, they are achieved when Bob’s measurement bases are mutually unbiased.

Mi(z) = cos® (cos—1 ( ) — cos ™1 (\/E)> . (S24)

Proof of Lemma 3 Ler Bob’s decoding bases be {|y)}r, and {|¢x)}r, corresponding to y = 1 and 2, respectively. Given
inputs x1, xo, Alice’s best strategy is to encode a superposition of ¢, ) and |¢., ). Having any orthogonal components to these
states will drop her average success probability and hence those strategies will not appear in the maximization performed for
the trade-off function. Explicitly:

£(x) = |a) = ﬁ (i) + €€(1 = 8)[6,)) (525)

where N = 1+ 2t(1 — t) (R[e* (Vu, | $0,)] — 1) is @ normalization factor, t € [0,1] is a parameter that will vary to change
Bob’s probability of correctly guessing the first dit, and ¢ € [0, 27) is a phase. It can be verified that ( = —Arg((Vz, | bz, )), Le.

el (g, |be,) € RT simultaneously maximizes both |(1)y, |x)|? and |(¢w, |7)|?, for all t € [0,1). These are the probabilities of
Bob correctly guessing x1 and xo, respectively. With this choice of ( then:

2
o = oyt = LV O] 526

N

2
(aafeyp = T UZO) (s27)
N

where s, = |(thy, |, )| Inverting equation (S26) to have t = t(z,, 5,):

f F + /52(v/Sz + 22 — 1) £ /(50 — 1)22(20 — 1)4 (s28)

(Ve = 1)(\/52 — 14 22,)

Then, inserting it into (S27) we obtain the probability of correctly guessing the second dit, as a function of the probability of
correctly guessing the first (z;).

Has|Z)|? = (1 — 22) + $0(220 — 1) £ 2¢/54 (50 — Dza(20 — 1). (S29)

We take the positive sign, since we want to maximize the average success probability. Hence, we are trying to maximize the
expression:

1
D= max — 145,22, — 1) +2+/82(5x — 1)2e(22. — 1) ), S30
P= tudhiion 2d2§:< ( )+ 2Vl )2 )> (530

subject to the conditions 0 < s, 2, <1, sp =d, and Y 2, = 2d?, where z = P(Bob correctly guesses x1).
The non-constant part of the above expression can be written as Y. f(Sz, %), where f(S4,22) = Sz25 +
=T
\/sw(l — 84)22(1 — 2,). This sum is a function of the 2-by-d* matrix S = (;T) where the x-th element of the vector § (Z)
is Sy (zz). Note that for any matrix S satisfying the constraints on the s, and z,,

1 1

11 1 @ &
S*=|(d d " d| =98 : (S31)

Z Z ... 2 :

1 1

dz " d?

Here, the last matrix is doubly stochastic, and hence we say that any matrix S satisfying the constraints on the s, and z,
majorizes S* (see [6, Definition 15.A.2]). But this is equivalent ([6, Proposition 15.A.4]) to the statement that ), ¢(Sz, 2z) <



>ow qﬁ(%, 2) for all continuous concave functions ¢ : R? — R. It is straightforward to show that the function f(s;,z;) is
concave (i.e. its Hessian is negative semi-definite) on the domain [0, 1] x [0, 1], and hence, considering the above, the ASP (Eq.
(S30)) is maximized by s, = % and z, = z for all x. Substituting these into Eq. (S29) we get the form of the trade-off function:

2: -1 d—1)2(1 =
Mi(z)=1-z+ Zd PA 312( 2 ($32)

which can be furthered simplified into (S23).

To obtain the other form of MY(z) we can visualize the problem geometrically, by regarding the angle 0 between two state
vectors |€) and |x) to be 0 = cos™L (|{€|x)|). We have shown that the trade-off function is obtained when Bob uses two mutually
unbiased bases, hence the measurement vectors |1, ) and | ¢, ) have an angle of cos™* (dil/ 2) between them. Alice’s encoded
state |x) must lie on the plane of the measurement vectors and the angle between |x) and |1, ) is cos™! (\/z). The trade-off
function (S24) is then obtained when we see that the angle between |x) and |¢,) is the difference of the two angles described
above.

Notice that in the discussion following (S31) it was shown that s, = |(¥s, |¢z,)|? = 1/d for all z. This is precisely the
MUB condition on Bob’s measurements. To arrive at Alice’s optimal strategy we need to maximize (S22), using the derived

representation (S24) of MY (z). The maximization can easily done by setting dfgd = 0, to find 2z ax. Explicitly:
1 1
Zmax = M%(Zmax) = 3 (1 + ﬁ) . (S33)

This means that the best strategy for Alice is to encode every state |z) into an equal superposition of |1, ) and |¢,) in order for
the success probability to be the same, no matter which basis Bob chooses to do a measurement in. We put this into a corollary:

Corollary 1 For 2* — 1 QRACs, the optimal average success probability is achieved when Bob uses two mutually unbiased
bases ({|Vxy) }ars {|Pus) tzs ), and Alice encodes her inputs into states |x1x2) which are equal superpositions of |1, ) and

|6,)-

Note that this optimal quantum strategy for d-dimensional 22 — 1 QRACs has been discussed in [7]. The optimal encoding
strategy for Alice involves encoding her state into the eigenvector corresponding to the highest eigenvalue of the operator
(|21 ) (Yuy | + |@as) (@as,|). This is the state given in Equation (2) of the main text.
For completeness, we also define the classical trade-off function M (z) in an analogous way to Definition S1.5, except that
the maximization is done over classical encoding-decoding strategies. In fact, this function is linear:
MS(z) = d%l _ (S34)
This can easily be checked, since the optimal success probability for 2¢ — 1 RACs is known to be pc, = (d + 1)/2d [8].
This success probability can be obtained by the pure coding schemes of just sending the first or second dit, and all convex
combinations of these strategies would give the same maximum. See Fig. S3 for a visualization of the trade-off functions with
varying dimensions. Note, however, that classical strategies factorize, so that we never use the trade-off functions in this setting
alone, but only in conjunction with the quantum functions, e.g. if Alice is able to encode her input dits into quantum systems of

dimensions dy, da, . . ., d,_1 and the rest of the information of dimension d,. classically, we would have to maximize:
D, 1 1,2 T 1 r—1 3 r
= max — 2t MY (Y MY z" p z’]. S35
PQ4y Qay--Qa,_, Ca, el el 1] 2 [ dy (z7) dr,l( ) 17.( ) ( )

S1.D. Two Examples
SI.D.I.  d=39

Here, we take the case d = 39 into consideration, which will highlight the necessity of the trade-off functions. We have that
DQsy = % (1 + ﬁ) ~ 0.5801. Now, we wish to know the optimal ASP if the preparation and measurement are split in terms
of two systems with dimensions d; = 13 and dy = 3. Numerically we optimize (S22):

- Lrio 1 2
) = : - + M1 M =~ 0.5217. S36
PQ13Qs zle[%{?ﬁﬁe[%ﬁﬂ 3 [Z z 13z ) M3 (2 )} (S36)



Mi(z)

. —_—d=2

1 —d=3
—_d =232
—d =512

classical
1 =z
3 1

FIG. S3: Visualization of the quantum trade-off functions M?(z), with varying dimensions.

A contour plot of of the function being maximized (S36) with the maxima highlighted can be seen in Fig. S4. In
fact, the maximum is obtained in two different points. Let (2!,22) = (0.1944,0.4302) be the first point, then in fact
(M5(0.1944), M2(0.4302)) = (0.9695,0.9900) is the other point which achieves the maximum. The first point, where
both 2! and z? are relatively small, the strategy gives a strong bias to guessing the second dit x5 at the expense of lowering the
probability of correctly guessing the first input 2. Explicitly for the first point; P(Bob correctly guesses x1) = z'2% ~ 0.0836,
whereas P(Bob correctly guesses x2) = M{5(21)ME(2?) ~ 0.9598. It is clear then, that the second point which achieves the
maximum is just a reflection of this strategy, now giving a positive bias towards guessing the first dit.

Avg. Suce. Prob.

FIG. S4: Contour plot of (S36), for the example d = 39. See text for details.

To conclude, we explicitly see that pg,,q, > Dg,;Dg, ~ 0.5037. That is, even though Alice and Bob are using two non-
interacting Hilbert spaces, the optimal strategy is a global one, instead of playing strictly independent QRACs.

S1.D.II.  d=1024

Now, we look at the case d = 1024, the dimension we certify in our experiment. We compute the optimal success probabilities
for all possible quantum partitions of a 1024-dimensional quantum system. The values were calculated using Eq. (S35). The
aim here is to show that Q5122 was the relevant bound for the experiment, and not e.g. (Q32(Q032 or any other partition. See
Table S2.

Notice that, since M¥(z) > M§(z), there is no need to calculate the classical-quantum partitions, as they would clearly be
worse than the equivalent fully quantum partition. However, it is interesting to note that Q512C2 > Q256Q4.

S2. EXPERIMENTAL CONSIDERATIONS

In this section, we deal with the analysis supporting our photonic experiment in dimension d = 1024.
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S2.A. Useful Representation of the MUBs

From a theoretical point of view, any two mutually unbiased bases in dimension d = 1024 would yield the optimal average
success probability. However, in our optical setup, for simplicity it is better to consider a representation of the two MUBs which
have only matrix elements given by 1. Thus requiring only phase-modulations of 0 or 7 to be addressed by the SLMs to encode
and decode the required states. To construct such MUBs in dimension 1024, we first consider two MUBs in dimension 4:

11 1 1
4 1l 1-11 -1
MUB{=* = = , S37
! 211 -1 -1 637
1 -1-11
1 -1 1 1
11 -1 -1
MUBY= = _ . S38
2 21 1 1 =1 (538)
-1 -1 1 -1
Now, if we consider the following tensor products:
MUB; = (MUB{=%®> MUB, = (MUBZ=4)®, (S39)

we end up with two MUBs in dimension 1024, where the columns represent the basis states.

S2.B. Single Detector Scheme

In our photonic experiment, we are dealing with a very large dimension (d = 1024). The protocol requires Bob to perform
a full von Neumann projective measurement on one of two bases before outputting his guess b. In the laboratory this would
translate to having 1024 different photo-detectors associated to each of the eigenvalues of the measurement performed, which
is practically impossible. However, one can simulate a full d-outcome projective measurement to overcome this limitation, as it
has been commonly done in the field of high-dimensional quantum information processing [9-12]. The basic idea is that Bob
uses a flexible detector scheme, which can project the incoming state to each one of the MUBs states required in the protocol.
Thus, estimating the probability for each basis state collapse individually with only one detector.

In this case, one uses an extra randomly uniform input j € [d] on Bob’s side. Depending on his inputs y, j Bob will measure
the operators {[mf)(mY[,1 — |m¥)(m}|}. If Alice’s state collapses on |m¥)(m}|, i.e. a photon is recorded by Bob while the
scheme is set to make the projection |m7;>(m7]’\ he will claim that x,, = j. Otherwise, he will assume that =, # j. A full von
Neumann measurement is simulated in the case that

Z [m¥)(m¥] =1, Yy € [n]. (S40)
J€ld]

Let us consider the events where 2, = j and define the total number of such events X;. Let us also define D; as the number
of “clicks” from the experiment in those cases. Likewise, let X5 denote the number of events where ,, # j, and D, the clicks
in those cases. Assuming uniform sampling, (d — 1) X; = X».

To get an appropriate figure of merit for the experiment in this scenario, consider first the rotal experimental efficiency:

# real clicks
V= .
# theoretically expected clicks

(S41)

Note that this efficiency does not assume anything about the inner-workings of the actual experimental setup, making it still

compatible with the device independent approach. Let ¢ be the average success probability of a given strategy, then:
D1+ Dy D1+ Dy

qXi + (H) Xo X1

V=

(S42)

To calculate the number of theoretically expected clicks, we use the average failure probability (ﬁ for simplicity, but without

loss of generality. Furthermore, note that the average success probability is the ratio of the times Bob correctly guessed =, = j,
to the number of times he should have guessed it to be z,, = j:
D,y

=1 S43
X v, (S43)
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Then, by combining equations (S42) and (S43), we obtain:

D,

= —, S44
D1+ D5’ ( )

q

which will be our main experimental figure of merit to calculate the average success probability ¢ of the strategy. There are
several benefits of using (S44) : (1) It has an easy operational interpretation as “fraction of times Bob clicks correctly, compared
to the total number of clicks”, (2) since it only uses the data from the clicks, it is more experimentally friendly, not lowering the
statistics due to detector malfunction or lossy channels, (3) from how it was derived, it does not assume the inner workings of the
experiment, making it quite general, and most importantly (4) with the assumption of Eq. (S40), it is equivalent to the standard
form of the ASP, i.e., Eq. (S6).

S2.C. Robustness of the ASP to Detection Efficiency and Poissonian Source

In the previous section, we arrived at (S43) by assuming that there was only one photon present in each experimental round.
However, in our experimental setup we do not have a perfect single photon source, and multi-photon events can occur. The
problem with having more than one photon in the system, is that our detector does not resolve the number of detected photons
(otherwise this would not be an issue, and we would simply discard events with more than one photon). The nature of our
detection event, the so-called “click”, is in fact the probabilistic event “at least 1 photon detected”. Of course this event can be
understood as the complement of the event “no photon detected”. If we assume for a brief moment that » = 1, and that there is
a n-photon event, the probability of having a “click“-event would be:

P(detecting at least 1 photon |n-photon event) = 1 — (1 — ¢)*. (545)

Due to the nature of laser light formation, we consider a Poisson distribution for our photon production, with mean . which
can be experimentally tuned. Now, we return to the case of having experimental efficiency v. Imagine that there are n photons
with Alice’s state |¥) present, out of which only & collapse onto the correct state |®) during the measurement process, and then
each of the k photons have a v probability of being detected. Hence, the probability of at least one click would be:

D,

X = Z P(n photons produced) Z P(k of the n photons collapsing on |®)| n-photon event))P(at acast 1 detected). (S46)
1

n=1 k=1

This expression is fully general. We now explicitly introduce the Poissonian distribution:

% - i (%) Z (:)qk(l —g"F(1—(1—=)b). (S47)

n=1 k=1
To simplify matters, we look just at the inner summation to get:

n

> (Z) Fl—g" "1 -1-v)f)=1-(1-vg" (548)

k=1

Which is what we could have intuitively guessed since the beginning. If there are k photons present, then the probability to
detect at least 1 photon with a v experimental efficiency is just 1 — (1 — v¢)™. Then, putting (S48) into (S47) and carrying out
the sum we obtain:

Dy
Ty $49
X, ¢ (549)

We note that while deriving this, we have been assuming the optimal QRAC strategy for the encoded states and measurement
operators. In particular, ¢ does not depend on the inputs of Alice and Bob, (as shown in lemma 3), i.e. every round performs the

same as the average. In the same way, the average failing probability (é%;’) will be modified as:

Dy o 1=a
=1 "“(,1—1). S50
Xo ¢ (550)
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Then, if we divide the rhs of (S44) by X, and we use (S49) and (S50), we obtain:

D, p—
Di+Dy | _gmvma 4 (d—1) <1 - e*““(ﬁ)) ’

(S51)

which relates the theoretical average success probability of the strategy g, to our experimental figure of merit. We interpret
this as follows: suppose Alice and Bob’s strategy predicts an average success probability of ¢, and we experimentally know the
value vp. Then, equation (S51) gives the maximally allowed value of the figure of merit, assuming no other experimental errors.
Experimentally, this allows us to fine-tune the p parameter, to be sure the QQ512Q> value can be violated.

The first order term of (S51) in the small parameter vu (0.052 in our setup) is:

D 1/1-—
— =g (dff) q(dg — Dvp + O ((vp)?) . (S52)
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Case Optimal p

Q1024 0.515625
Q512Q2 0.500980
Q256Q4 0.500654

Q256Q2Q2 0.500653
Q128Qs8 0.500563
Q128Q4Q2 0.500561
Q128Q2Q2Q2 0.500560
Q64Q16 0.500530
Q61QsQ2 0.500525
Q64Q4Q4 0.500524
Q64Q4Q2Q2 0.500523
Q64Q2Q2Q2Q2 0.500523
Q32Q32 0.500521
Q32Q16Q2 0.500512
Q32Q3Q4 0.500509
R32Q3Q2Q2 0.500508
Q32Q4Q4Q2 0.500507
Q32Q4Q2Q2Q)> 0.500507
Q32Q2Q2Q2Q2Q- 0.500506
Q16Q16Q4 0.500505
Q16Q16Q2Q2 0.500504
Q16QsQs 0.500503
R16QsQ1Q2 0.500501
QR16QsQ2Q2Q2 0.500501
QR16Q4Q4Q4 0.500500
Q16Q1Q4Q2Q2 0.500500
QR16Q4Q2Q2Q2Q2 0.500499
Q16Q2Q2Q2Q2Q2Q2 0.500499
QsQsQsQ2 0.500499
QsQsQ1Q4 0.500498
QsQsQ4Q2Q2 0.500498
Q:Q8Q20Q2Q2Q2 0.500497
QsQ14Q1Q4Q2 0.500497
Q3Q1Q4Q2Q2Q2 0.500496
Q8Q1Q20Q2Q2Q2Q2 0.500496
Q8Q2Q20Q2Q2Q2Q2Q2 0.500495
Q1Q1Q1Q4Q4 0.500496
Q1Q1Q4Q41Q2Q2 0.500495
Q1Q1Q1Q2Q2Q2Q2 0.500495
Q1Q4Q20Q2Q2Q2Q2Q2 0.500494
Q1Q2Q2Q2Q2Q2Q2Q2Q2 0.500494
Q2Q20Q2Q2Q20Q2Q2Q20Q:2Q2 0.500493

TABLE S2: All quantum cases for a 1024-dimensional system and the respective optimal ASPs considering each product
structure.
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Mutually unbiased bases (MUBs) constitute the canonical example of incompatible quantum measurements.
One standard application of MUBs is the task known as quantum random access code (QRAC), in which
classical information is encoded in a quantum system, and later part of it is recovered by performing a quantum
measurement. We analyze a specific class of QRACSs, known as the 2¢ — 1 QRAC, in which two classical dits
are encoded in a d-dimensional quantum system. It is known that among rank-1 projective measurements MUBs
give the best performance. We show (for every d) that this cannot be improved by employing nonprojective
measurements. Moreover, we show that the optimal performance can only be achieved by measurements which
are rank-1 projective and mutually unbiased. In other words, the 2¢ — 1 QRAC is a self-test for a pair of MUBs
in the prepare-and-measure scenario. To make the self-testing statement robust we propose measures which
characterize how well a pair of (not necessarily projective) measurements satisfies the MUB conditions and
show how to estimate these measures from the observed performance. Similarly, we derive explicit bounds
on operational quantities like the incompatibility robustness or the amount of uncertainty generated by the
uncharacterized measurements. For low dimensions the robustness of our bounds is comparable to that of
currently available technology, which makes them relevant for existing experiments. Last, our results provide
essential support for a recently proposed method for solving the long-standing existence problem of MUBs.

DOI: 10.1103/PhysRevA.99.032316

I. INTRODUCTION

Mutually unbiased bases (MUBs) play an important role
in many quantum information processing tasks. They are
optimal for quantum state determination [1,2], information
locking [3,4], and the mean king’s problem [5,6]. Moreover,
they give rise to the strongest entropic uncertainty relations
(among projective measurements) [7-9]. One intuitive way
to look at them is the following: Imagine that we encode a
classical message in a pure state corresponding to an element
of a basis. If we measure this state in a basis unbiased
to the initial one, then each measurement outcome occurs
with the same probability. That is, we do not learn anything
about the originally encoded message. Formally, two bases
{|a,»)}l?":l and {ij)}j:1 in C¢ are mutually unbiased if

l{ai |b)I? = é Vijeld={12....d. ()

Due to their importance, significant effort has been ded-
icated to investigating their structure (see Ref. [10] for a
survey and Ref. [11] for a classification in dimensions 2-5).
It is known that in dimension d, there are at least 3 and
at most d +1 MUBs and the upper bound is saturated in
prime power dimensions. The maximal number of MUBs in
composite dimensions is a long-standing open problem (see
Refs. [12—17] for the case of dimension 6).

“mate.farkas @phdstud.ug.edu.pl
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Another scenario in which MUBs perform well is the so-
called2¢ — 1 quantum random access code (QRAC) [18,19].
In this setup, two classical dits are encoded into a qudit,
and the aim is to recover one of them chosen uniformly at
random. It is well-known that sending a quantum system gives
an advantage over sending a classical system (of the same
dimension) [20] and this fact is used in many quantum in-
formation protocols [21-25]. It is commonly believed that the
optimal performance of the 2¢ — 1 QRAC is achieved when
the measurements correspond to a pair of MUBs in dimension
d, but this claim has only been proven for a restricted class of
measurements [26].

The observation that quantum systems can give rise
to stronger-than-classical correlations was first made by
Bell [27] (although in a slightly different setup). Moreover, it
turns out that some of these strongly nonclassical correlations
can be achieved in an essentially unique manner. That is, the
observed statistics allow us to identify the employed states
and measurements (up to local isometries and extra degrees
of freedom). The most prominent example of this kind is the
well-known CHSH inequality [28], which is maximally vio-
lated by a pair of MUBSs in dimension 2 on both sides [29-32].
Whenever such an inference—characterizing the state and/or
measurements based solely on the observed statistics—can
be made, it is referred to as self-testing [33-35]. Self-testing
is closely related to the concept of device-independent (DI)
quantum information processing, in which the devices used
in the protocol are a priori untrusted [36—40]. It is clear
that what makes DI cryptography possible is precisely the
self-testing character of the correlations observed during the

©2019 American Physical Society
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FIG. 1. Schematic representation of the 2¢ — 1 QRAC protocol.

protocol. By now self-testing is a well-developed field [41-48]
and includes results which are robust to noise [49-55]. Such
statements are of particular interest, as they can be directly
applied to experiments [56].

Recently the notion of self-testing has been extended to
prepare-and-measure scenarios [57]. In this setup, a prepara-
tion device creates one of many possible quantum states and
then sends it to a measurement device. The latter performs
one of many possible measurements on the state, and then
produces a classical output. This scenario encompasses many
important quantum communication protocols, e.g., the BB84
and B92 quantum cryptography protocols [58,59] and the
aforementioned QRACsS.

In the prepare-and-measure scenario one cannot distin-
guish between classical and quantum systems, unless addi-
tional restrictions are imposed. The standard choice is to place
an upper bound on the dimension of the system transmitted
between the devices [60-62]. This is often referred to as the
semi-device-independent (SDI) model for which several cryp-
tographic protocols have been proposed [63—65]. In analogy
to the DI model, it is clear that the security of SDI protocols
is related to self-testing results in the prepare-and-measure
scenario.

In this paper, we investigate the self-testing properties of
the 2¢ — 1 QRAC. In Ref. [57], the authors derive robust self-
testing results for d = 2 and ask whether similar statements
hold for larger d. We resolve this question by deriving a
robust self-testing statement for arbitrary d. We show that
the optimal performance in the 2¢ — 1 QRAC certifies that
the two measurements correspond to MUBs. To make the
statement robust we propose measures that characterize how
close a pair of POVMs is to the MUB arrangement and derive
explicit bounds on those in terms of the QRAC performance.
Finally, we use this characterization to obtain explicit bounds
on operationally relevant quantities like the incompatibility
robustness [66] or the amount of uncertainty produced.

II. SETUP

In the 2¢ — 1 QRAC scenario (see Fig. 1), on the prepara-
tion side Alice gets two uniformly random inputs, i, j € [d].
Based on these inputs she prepares a d-dimensional state p;;,
and sends it to Bob who is on the measurement side. He gets
a uniformly random input y € {1, 2}, which tells him which
of Alice’s inputs he is supposed to guess. If y = 1, he aims to
guess i, otherwise j. This is performed by a measurement on
pij» which we describe by the operators {A;}; for y = 1, and
{B;}; for y =2, where A;,B; >0, Y ;A; = Zj Bj =1 and
i, j € [d]. The outcome of the measurement determines Bob’s

guess and the figure of merit is the average success probability
(ASP), which can be written, using the above notation, as

1

p= Z?Ztr[m,-miw,-)]. )
ij

III. IDEAL SELF-TEST

To obtain the ideal self-testing statement we derive an
achievable upper bound on the ASP and identify situations
in which all the steps in the derivation are tight. Note that
tr[p;;(A; + Bj)] < |A; + Bj|, where ||.|| is the operator norm,
and since (A; +B;) > 0, one can always find a state p;;
such that this inequality is saturated. Let us from now on
assume that the preparations are always chosen optimally,
which allows us to focus solely on the measurements. Finding
the maximal ASP can be performed using operator norm
inequalities and other tools from matrix analysis and yields
the following theorem.

Theorem 1. The average success probability of the 2¢ — 1
QRAC is upper bounded by

1 1
P<2<1+ﬁ) =: Pg, 3
and this bound can only be attained if Bob’s measurements
are rank-1 projective and mutually unbiased. Moreover, in the
optimal case the prepared states are the unique eigenstates of
A; + Bj, corresponding to the highest eigenvalue.

It was previously known that this upper bound holds if we
restrict ourselves to rank-1 projective measurements and that
among these measurements only MUBs can actually achieve
it [26]. What we show is that the QRAC performance cannot
be improved by employing nonprojective measurements and
that the optimal performance indeed requires MUBs, even
if we allow for generic measurements. Note that this does
not follow from any extremality argument, as in general
projective measurements are not the only extremal d-outcome
measurements [67].

For a complete proof, we refer the reader to Appendix A.
Here, we state that the crucial step is to use operator norm
inequalities to show that the ASP is bounded by

_ 1 1
p<§+ﬁ;\/nﬁ “

where f;; :=tr(A;B;) > 0, and therefore Z;/ tij =d. The
right-hand side is strictly Schur-concave in {#;;};;, and hence is
uniquely maximized by the uniform distribution, #;; = é [68],
which yields pg. A separate argument implies that to reach pg
both measurements must be rank-1 projective and combining
these two facts leads to the conclusion that the two measure-
ments correspond to MUBs.

Theorem 1 implies that the 2¢ — 1 QRAC is an SDI self-
test for a pair of MUBs in dimension d: observing the optimal
ASP implies that the two measurements constitute a pair of
MUBs. One might wonder whether the self-testing statement
can be made even stronger, in the sense of providing more
details about the measurements, but this is not possible. It is
easy to check that every pair of MUBs is capable of producing
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FIG. 2. Lower bound on the overlap entropy for

pPE [% + ﬁ, Dol in dimension 4.

the optimal ASP. This ideal self-test is crucial for the success
of the methods described in Ref. [26], as there it is essential
that the optimal QRAC ASP can only be obtained with an
arbitrary pair of MUBs.

IV. ROBUST SELF-TEST

Since in a real experiment one never observes the optimal
performance, the ideal self-testing result is not sufficient.
Instead, we need a robust self-testing statement, which tells us
what can be certified in the case of sub-optimal performance.

Inequality Eq. (4) implies that observing the optimal ASP
forces the distribution {#;;};; to be uniform. For subopti-
mal performance we immediately get a bound on the %—
Rényi entropy (H%({q,-}) =2log, [Y_; /qi]) of the distribu-
tion {#;;/d};;, which we call the overlap entropy Hg(A, B) :=
H, ({t;j/d};;). More concretely, from Eq. (4) we deduce that

Hs(A, B) > 2log,[dv/d(2p — 1)], ®)

This bound is nontrivial as long as p > %—i— ﬁ and ob-

serving p = po implies Hs(A, B) = logz(dz), which is the
maximal value of the overlap entropy for a pair of POVMs.
For d = 4 the lower bound is plotted in Fig. 2.

Looking at the overlap entropy is not sufficient, because
the maximal value can be achieved by measurements which
are not MUBs, for instance, the trivial measurements corre-
sponding to A; = B; = I /d. The missing part is an argument
showing that the measurements are close to being rank-1 pro-
jective. For a d-outcome measurement {A;}; acting on C¢ this
property can be assessed by looking at the sum of the norms,
N(A) := >, llA;ll, since for all measurements N(A) < d and
the maximal value is attained if and only if the measurement
is rank-1 projective. Therefore, saturating N(A) = N(B) =d
and Hs(A, B) = log,(d?) certifies the MUB arrangement.

To obtain a bound on N(A) we need a stronger version of
Eq. (4). In Appendix B we show that

1 1
P <5+ g D s — @ = V2sinil, ©6)
ij

where n;; ;=1 — %(HA,'Il + B;]) and s;; := |/A;/B;|. This
bound reduces to Eq. (4) if we omit the negative term and

O.7£
FIG. 3. Lower bound on the sum of the norms for p € (po, pol
in dimension 4.

0.744 0.746 0.748

bound s;; by ,/7;j, which constitutes an alternative derivation
of Theorem 1 (as n;; = 0 for all 7, j implies that both mea-
surements are rank-1 projective).

The important feature of Eq. (6) is that it allows us to lower
bound the sum of the norms. In Appendix B we show that for

p>Do=73+ ﬁ (d? — 1)d we have

2442
d

N@A) =zd - = Vd32p—172—(d> - D], (7)
and by symmetry the same bound holds for N(B). It is easy to
check that for p = py, the right-hand side evaluates to d, i.e.,
the optimal performance certifies that both measurements are
rank-1 projective. The lower bound given in Eq. (7) is plotted
ford = 4 in Fig. 3.

Since Eqgs. (7) and (5) allow us to robustly certify the
two defining properties of MUBs (rank-1 projectivity and
uniformity of overlaps, respectively), combining them yields
arobust self-test for MUBs. Note that the robustness is limited
by Eq. (7) which requires that p > po.

V. OPERATIONAL BOUNDS

In the previous paragraph we have focused on quantities
tailored to certify closeness to the MUB arrangement. Let us
now show that a similar approach can be used to derive bounds
on quantities which have an immediate operational meaning.

We begin with the incompatibility robustness. We say
that two POVMs {A;}; and {B;}; are compatible (or jointly
measurable) if there exists a parent POVM {M;;};;, such that
> iMi;=A; and ), M;; = B; for all i, j. Otherwise, they
are incompatible, which is often taken as the definition of
nonclassicality. To quantify incompatibility beyond this bi-
nary characterization, the notion of incompatibility robustness
has been introduced [66]. Consider the noisy POVMs, A? =
nA; + (1 — n)trA;1/d, and similarly B'}. The incompatibility
robustness n* of A and B is defined as the largest 1 such that
{A]}; and {B?} ; are compatible. According to this measure
MUBs are highly incompatible, but, perhaps surprisingly,
they are not the most incompatible among rank-1 projective
measurements in dimension d [69].

Recently an analytic upper bound on n* has been derived
for an arbitrary set of POVMs [70]. For a pair of POVMs the
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0.747 0.748 0.749 0.75 ?

FIG. 4. Upper bound on the incompatibility robustness over the
nontrivial region in dimension 4.

bound reads
d? max;; |A; + Bjl — Y- (tr Ap)> = 3 (i B))?

< )
dy ,wA2+d > trB? =2 (trA)? = 3 (tr Bj)?
®

*

n

All the quantities appearing in this expression can be bounded
using the previously developed methods, which leads to a
bound which depends only on the observed performance p.
Since the final bound is rather complex, we do not present it
here and refer the interested reader to Appendix C. The impor-
tant feature of the bound is that for the optimal performance
P = po we recover the correct value of the incompatibility

robustness for a pair of MUBs, i.e., n* = %ﬁjl . In Fig. 4 we

plot the bound for d = 4 over the region where it is nontrivial.

‘We note here that similar bounds can be derived for other
measures of incompatibility robustness using the same tech-
niques. Among these is a measure that uses arbitrary POVMs
as noise [71], for which MUBs are the most incompatible pair
of POVMs (of any number of outcomes) in dimension d [72].
This can also be certified by observing p = po.

The second operational quantity we consider is the amount
of randomness produced by the uncharacterized measure-
ments. For a POVM A, let H(A), := H({tr(A;p)},;) be the
Shannon entropy of the outcome statistics of A on the state p.
Maassen and Uffink derived a state-independent lower bound
on H(A), + H(B), for rank-1 projective measurements [7].
For our purposes we need a more general statement which
covers nonprojective measurements. Such a bound has been
derived in Ref. [73] and reads

H(A), +H(B), 2 —log,c, ®

where ¢ := max;; | JVAi\/B j||2. Therefore, we need an upper
bound on s;; and such a bound has already been derived in
Appendix B. The final statement reads

HA), +H(B),

> —2log, (2p —1+ é\/d(dz — DIl —d@2p— 1)2]>.

10)

H(A), + H(B),
b — — — —

1.5

0.742 0.744 0.746 0.748 0‘75p

FIG. 5. Lower bound on the entropic uncertainty over the non-
trivial region in dimension 4.

The optimal performance certifies log, d bits of randomness,
which is the maximal value for a pair of projective measure-
ments. We plot the above bound for d = 4 over the region
where it is nontrivial in Fig. 5.

We note that a similar bound can be derived for the
one-shot analog of the Shannon entropy, the min-entropy
Hpin (Which coincides with the co-Rényi entropy), which is
often preferred in cryptographic scenarios. It was shown in
Ref. [74] that for a pair of POVMS, Hyin(A), + Hpin(B), 2>

—log, ( 1+2ﬁ

of Eq. (10).

), for which we can derive a similar bound to that

VI. SUMMARY AND OUTLOOK

We have shown that the 2¢ — 1 QRAC constitutes a
robust self-test for MUBs in arbitrary dimension. Observing
sufficiently high ASP allows us to deduce that the employed
measurements are close to being rank-1 projective and that
their overlaps are close to being uniform. The same approach
can be used to bound operationally relevant quantities like
the incompatibility robustness or the amount of randomness
produced. For low dimensions the robustness of our bounds
makes them interesting from the experimental point of view.

The most obvious direction for further research is to use
our self-testing results to prove SDI security of prepare-and-
measure quantum key distribution using high-dimensional
systems. One of the main components of the SDI security
proof given in Ref. [63] is the relation between the observed
QRAC performance and the randomness produced for d = 2
(qubits). In this work we derive precisely such relations for
arbitrary d and we believe that one can use them directly in
security proofs.

There is an important difference between SDI self-testing
and DI self-testing. In the usual DI self-testing we certify
systems up to local isometries and extra degrees of freedom.
Since the second equivalence is not relevant in the SDI setup
(the dimension of the system is fixed), one might expect that
SDI self-testing should characterize the measurements up to
a unitary transformation. However, this is generally not the
case: While in some dimensions all pairs of MUBs are equiv-
alent up to unitaries (and possibly complex conjugation), e.g.,
d = 2,3, 5, there are dimensions where this is not the case,
e.g.,d = 4[11]. It is natural to ask whether these inequivalent
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classes of MUBs can be distinguished by considering more
complex QRACs. In fact, a related version of this question
appears readily if we consider nY — 1 QRACs with n > 2.
In this case it is known that different classes of n-tuples of
MUBs perform differently [26,75]. Numerical evidence for
n =3 and low d suggests that the optimal performance is
achieved by one of these classes, so one might conjecture
that such QRAC: self-test this particular class. Again, it is not
clear how to certify the remaining classes.

The 2¢ — 1 QRAC analyzed in this paper is closely
related, at least in spirit, to the family of Bell inequali-
ties proposed by Bechmann-Pasquinucci and Gisin [76]. We
hope that the understanding gained in this work will help
us to prove self-testing statements for those inequalities. It
would be particularly interesting to see whether the need for
“more-than-unitary” freedom can also appear in the standard
nonlocality-based self-testing.
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APPENDIX A: IDEAL SELF-TEST

In the main text, we establish that the QRAC ASP can be
upper bounded by

1

p< ﬁizjl\f\ﬁlel, (A1)
and this can always be saturated by suitable states p;; on the
preparation side. To bound the above quantity, we use a spe-
cial case of a matrix norm inequality derived by Kittaneh [77],
applied to the square-root function and the operator norm.
For further purposes, we briefly reproduce the proof here as
well. We will make use of the fact that for operators A, B on a
Hilbert space, |A & B|| = max{||A], |B|} [78].

Theorem 2. Let A, B > 0 be operators on a Hilbert space.
Then A + B < max{||Al, [BI} + |vVAV/BI.

Proof. Consider the block-operator

X = <*/f®, and thus XTX = A + B.

Therefore,

lA+B| = IXX] = XX = H (JI?JX Ji@ H
=16 5)+ (a5

<6 Bl aa )

= max{JAl, B} + IVAVBI,

(A2)

(A3)

where we used some basic properties of the operator norm
(see, e.g., Ref. [78]; or Ref. [77] for a more detailed and
general version of the proof).

Using the above theorem, we get

1
P< 5 2 max{IAl 1B} + IVABD. - (Ad)
ij

From ), A; = 3, B; = L it follows that A;, B; < I, and thus
IA:ll, 1Bl < 1. Then

1 1 1
P< 55 2 A+ IWAVED = 5 + 55 3 IVAVE.
ij ij
(A5)

Now we use the fact that for any operator O, |O| < |O|,
where |O|y := 1/tr(O"0) is the Frobenius norm [78]. There-
fore,

1

11 1
P<5+om Z,: IVAVBlr = 5 + 5 ;\/tr(AiBj).
(A6)

Recall that t;; := tr(A;B;) and, therefore, #;; > Oand ), t;; =
d. The right-hand side of Eq. (A6) is a symmetric and strictly
concave function of the #;, and as such, it is strictly Schur-
concave (see, e.g., Ref. [68]). Therefore, it is maximized
uniquely by setting all the #;; uniform, ;; = 5 foralli, j € [d].
The upper bound on the ASP set by such #;; is then

1')<1+ 1 Z 1 _1<1+ 1)
< = .
2 2d? T Jd 2 Jd
Note that this bound is saturated by measuring in MUBs (see
also Ref. [26]).

Now, let us turn our attention to necessary conditions for
saturating the above bound. We first show that at least one
of the measurements must be rank-1 projective to reach the
optimal ASP. Saturating the upper bound requires tr(A;B;) =
5 for all 7, j € [d] and by summing over one of the in-
dices, we see that trA; = tr B; =1 for all i, j. Investigating
the chain of inequalities obtained above, it is necessary for
optimality that max{||A;|, |B;|} =1 for all i, j € [d]; oth-

erwise, p < # >+ IVA:/Bjl) < %(1 + ﬁ). Assume
that there exists a j* such that |Bj-| < 1. Then to ful-
fill max{|A;]|, |B;<|} =1 for all i € [d], it is necessary that
|A;l =1 for all i € [d]. Since these operators must all be
trace-1 and positive semidefinite, it follows that A; = |a;)(a; |
for all i € [d]. If there is no such j*, then [|B;|| =1 for all
J € [d], and we arrive at an analogous condition for B;. Thus,
without loss of generality we can assume that A; = |a;)(a;| for
alli € [d].

The rest of this Appendix is dedicated to showing that
the other measurement must also be rank-1 projective. Let
us analyze the inequality derived by Kittaneh and to do
so, we first recall a few definitions from matrix analysis.
We denote by L£(#) the algebra of linear operators on the
Hilbert space H, and by ||.|l;; the Hilbert space norm. The
numerical range of an operator O is W (0) := {{x|Ox)||x|ly =
1}, while the numerical radius is w(0) := SUP, =1 [{x]Ox)].

(A7)
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By construction every complex number ¢ € W(O) satisfies
|c] < w(O) and we always have w(0) < O] [78].

In Theorem 2, the inequality comes from the triangle
inequality and to investigate when this holds as an equality
we use a result by Barraa and Boumazgour [79].

Theorem 3. Let S, T € L(H) be nonzero. Then the equa-
tion |S+T| =|S|+ 7| holds if and only if |S||T| €
W(STT).

For a finite-dimensional Hilbert space the numerical range
is always closed [78], thus in our case the closure in the
theorem is redundant. It is immediate to see that a nec-
essary condition for the operators S and T to saturate the
triangle inequality is that |S||T| < w(STT). However, from
the submultiplicativity of the operator norm, we know that
w(S'T) < ISTI < ISTIIT| = ISIIT|, and hence this con-
dition is equivalent to w(STT) = | S||T].

We will also use the following bound on the numerical
radius, obtained by Kittaneh [80].

Theorem 4. If O € L(H), then

[w(O)F* < 51070 + 007]. (A8)

N

(w(ST)) < %max {|[VAB*VA + A3 BA3 |, |VBA*VB + B3 AB?
< %max {IVAB*VA| + |A2BA?

1 3
= 5 max {|VAB: | + A3 VB[,

1

= (VB + |Vas!

2

< max({|A|, |BI*}IVAVBI>.

Here, in the second line, we used the triangle inequal-
ity, in the third line the identity I0I? = |OTO| and in the
fourth line submultiplicativity. The last inequality is trivial,
and is only saturated if |A| = |B|. Therefore, |A + B| =
max{||Al, |B} + |VAv/B| only if |A] = |B].

This lemma shows that saturating the upper bound on the
ASP implies that |B;| = |A;| =1 for all i, j € [d]. It was
also necessary that tr B; = 1, and therefore (similarly to the
A;), Bj =|b;)(b;| for all j € [d], and both measurements
must be rank-1 projective. From here, it follows immediately
from the condition tr(A;B;) = 5, that the bases defining the
measurements must be mutually unbiased.

APPENDIX B: ROBUST SELF-TEST

While it is clear what it means for two measurements to be
exactly mutually unbiased, there are multiple ways of turning
this definition into an approximate statement (particularly if
we allow for nonprojective measurements). For our purposes
itis natural to split the definition of MUBs into two standalone
conditions and consider them separately.

The first condition, which is usually implicit in the def-
inition of MUBs, is that both measurements are projective

We are now ready to derive a necessary condition to
saturate Kittaneh’s inequality in Theorem 2.

Lemma 5. Let A, B > 0 be operators on a Hilbert space.
Then, the equality |A + B| = max{|A]. |B]} + [VAVB]
holds only if |A| = |B].

Proof. Let us denote the block-operators appearing in the
proof of Theorem 2 by

S:(ﬁ g)=s*, T=<J1§()JX ‘/’KO‘/E)=T*.

Then, following from Theorem 3 and the discussion below it,

a necessary condition for A, B > 0 to saturate Kittaneh’s in-

equality is that w(ST) = |S||T | = max{|Al, |BI}|~/Av/B].
Applying Theorem 4 to ST, we get that

(A9)

ton _ (VABVA 0
(ST)ST_< 0 JEAWE)®
+ _ (AIBA: 0
ST (ST) _< 0 B%AB%>, (A10)
and hence
}
. IVBA’VB| + |B2AB? |}
a3 VB[ + | VaB: |}
1
%) < SUAP + IBI)IVAVEI
(A1)

and that the measurement operators are rank-1. Let {A;}; be
a d-outcome measurement on a d-dimensional system and let
us consider the sum of the norms, N(A) := Y, |A;|. This is a
suitable quantity, because

N@A) =Y Al <Y A =d,

and since |A;| < 1, the maximum is achieved iff every mea-
surement operator is a rank-1 projector. Therefore, the differ-
ence between ), |A;| and the maximal value d tells us how
much {A;}; deviates from being rank-1 projective.

The second condition, often referred to as the MUB condi-
tion, requires that the overlap between every pair of measure-
ment operators is the same. The question here is how to gener-
alize the overlap to nonprojective measurements. The quantity
J/tr(A;B;) discussed in the main text is a valid generalisation
of the overlap in the sense that it reduces to the overlap
for rank-1 projective measurements. However, the argument
given below naturally leads to a different quantity, namely
I @\/E |. Note that this is a commonly used definition of
the overlap, e.g., in the context of uncertainty relations.

The main purpose of this Appendix is to derive a lower
bound on N(A) as a function of the observed performance.
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However, to do that, we must first derive explicit bounds on
the range of |v/A;\/B;].
In our argument we use the following technical lemma.
Lemma 6. The function

h(x,y) :=x4+y—axy — /x> +y?

for o := 2 — /2 satisfies h(x,y) > Oforx,y € [0, 1].
Proof. If we express x and y in terms of the polar coordi-
nates

x =rcos(d —m/4),
y = rsin(0 — 7 /4),
the function becomes
h(r,0) = r[cos(0 —  /4) + sin(6 — w/4) — 1]
ar?
— = sin[2(6 — 7 /4)] = r(v/2sinf — 1)
2
ar
—— cos26.
+ > cos

To cover the square x,y € [0, 1] we prove the statement for
rel0,42] and 6 € [ /4, 3w /4]. For fixed 6 the function
h(r, 0) is a quadratic function of r and the coefficient of the
quadratic term is nonpositive. This means that to determine
the minimum value, it suffices to consider the extreme points,
ie,r=0and r = /2. Since h(0,6) =0, we only have to
look at the latter. We have

h(~/2,0) = 2sin6 — /2 + & cos 26
= —2asin®0 + 2sinf +2 — 2v/2

1
=2a(l — sin6)<sin9 — —)
V2
and it is easy to see that for 6 € [ /4, 37w /4] each term is

nonnegative.

Moreover, we use the following operator norm inequality
derived by Kittaneh [81].

Theorem 7. For positive semidefinite operators A and B
acting on a finite-dimensional Hilbert space we have

1
IA+ Bl < S (Al + 1Bl + \/(HAII — B> + 4IVAVBI?).
B

In our argument A and B will be particular measurement
operators from the two measurements. We define the general-
ized overlap between A; and B; as

sij = |vAiy/Bjl € [0, 1].

Another relevant quantity of a pair of measurement operators
is the norm deficiency defined as

nij = 1—(lAil + 1B;1)/2 € [0, 1].

Itis easy to see that if n;; = O for all i, j, we have
D lAl =) 1Bl =d,
i J

i.e., both measurements are rank-1 projective. Our goal now
is to relate the right-hand side of Eq. (B1) to s;; and n;;. First,

note that
1Ail — 1B;1 = 21A:l — (AN + 1B;1D
< 2-2(1 —n;) =2n;;
and similarly
1Bl — 1Al < 2ni5.
These two inequalities imply that
(A = IB;1)* < 4nj,,

and plugging this back into Eq. (B1) gives

JAi + Bl < 1—nij+ \Jn? + 52,

Applying the inequality derived in Lemma 6 to s;; and n;;
gives

A; + Bl < 1+ s;; — as;jnj,
where o = 2 — /2. Applying this upper bound to Eq. (A1)

immediately yields

1
]_? < ﬁ Z(l +S,'j —OlS,'jl’ll'j)
ij

1 1 o
= E—"-Tﬂ;sij—rdz;sijnij. (B2)

Let us first bound the range of s;;, i.e., find explicit functions
of p denoted by spin and spax such that
Sij € [Smirn Smax]

for all i, j. To do this we drop the last term in Eq. (B2) to
obtain

1
PGt g L

To bound the sum of s;; we bound the operator norm by the
Frobenius norm:

sij = IWANB;| < IVAW/B;lr = u(AB)) = J1;;

and finally use the normalization condition 3, #;; = d. Let us
now separate one term from the rest of the sum. For simplicity
we choose the first term, i.e., 515, but by symmetry the same
argument applies to every s;;. We obtain

1 1
P < Ryl Rl Zsij
i1
1 1
<E+ﬁ 511+Z\/17j~ (B3)
A1

Since the remaining sum contains d> — 1 terms, concavity of

the square root implies that
_ d—1t < d— S%l
Vaz—1 “\Va2-1’

Zi_j#.]l lij
d? —1

1
D gV s

ij#11
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where in the last step we used the fact that s;; < i/f;.
Plugging this bound into Eq. (B3) gives

% 2312 [+ @2
Computing the derivative of f shows that f is increasing for
s < 1/\/67 and decreasing for s;; > 1/\/3. The maximum
achieved for s;; = 1/+/d corresponds to the optimal ASP.
This implies that the lowest and highest values of s;; com-
patible with the observed p can be determined by computing
the two solutions of the equality

; 2;2[ 2-1)(d _‘11)]

This reduces to solving a quadratic equation and finally we
deduce that 511 € [Smin, Smax], Where

p< = D(d —si)] = fGs)-

si1+4/(d

Smin 1= 2p — 1 — é\/d(dz “DII—d2p— 171, (B4

Smax i= 2P — 1 + l\/d(dz —DIl—dp—172. (B5)

The optimal performance ie. p= 2 + implies that

2f ’
Smin = Smax = —d. Moreover, since both functions are contin-
uous in p, for sufficiently good performance we obtain bounds
stronger than the trivial s;; > 0 and s;; < 1. This concludes
the first part of the argument, i.e., providing explicit bounds
on the range of the generalized overlaps.

For the second part of the argument, in which we show
that the measurements are close to being rank-1 projective, we
need all the overlaps to be bounded away from 0, i.e., Spin > 0.
According to Eq. (B4) this is guaranteed as long as p > py for

2 242 V(d? = 1.

Using the concavity result while keeping the negative term in
Eq. (B2) leads to

1o
il
Ps3tap

po =5

(sn+ @ = D(d=s}))

- Z

— Siinjj.

2d2 — Jhg
)

Without loss of generality we can assume that s;; is the
smallest overlap and then

1 1 _asu
P<3 2d2(“‘+ @ —1)(d—s3) e Zn,,,

which is equivalent to

Zn,, < s11+ (@ —1)(d —s}) —d*2p—1)].
(BO)
To analyze the right-hand side, we define
d d*(2p—1
() =1+ (@ — 1)(—2 - 1) _ -
X X

and now our goal is to maximize g(x) over x € [0, l/«/g],
as Smin < l/x/cj. Recall that we work under the assumption
that p > po and therefore 2p — 1 > 0. We can analytically

compute the derivative dg/dx and set it to O to conclude that
the only stationary point corresponds to

_J&@Cp—-1)—(@d>—1) 4 d*—1
- VT a2ep - 12

d2p—1)
Evaluating the second derivative d?g/dx? at x* tells us that
this is a maximum and since this is the only stationary point,
it must be the unique maximizer in the interval [0, 1 /\/3]4
Therefore, in Eq. (B6) we can set s;; = x* to obtain

> nij < 5[1 —V&@p—1)? = (@ - 1)
ij

Finally, we can use this bound to obtain lower bounds on the
sums of the norms > IAil and Y ;1B;] for the individual
measurements. Since

Zn,-,:dz—% S 1A+ 1851 .
ij i J
;181 <

we can use the trivial bound N(B) = d to obtain

ZHA > d—on,;,»

ij
>d— *[1 —Jd32p— 12— (@2 -1)]. (B
ad

N(A) =

Clearly, the same lower bound holds for N (B).

APPENDIX C: INCOMPATIBILITY ROBUSTNESS

In this Appendix we derive an analytic upper bound on the
incompatibility robustness as a function of the observed ASP.
We start with a bound derived recently in Ref. [70]:

- d® max;; |A; + Bj| — Y_,(tr A;)* = 3 (tr B;)?
T dYwA?+dYwB— Y (rA)? — ) (irB))
(CH

The aim is to bound all the terms appearing in this formula by
quantities which we have already bounded in Appendix B.

Let us start with the numerator. The first term is easy to
bound since

lA; + Bl < 1+ si;,
and max;; s;; < Smax given in Eq. (BS).

To bound the second term we use the fact that for posi-
tive semidefinite operators (tr A)> > tr A% and then bound the
Frobenius norm by the operator norm:

(rA)? > trA? = JA1% > A%

To bound the sum of the squares »_; |A;|> we use a stan-
dard inequality for vector p-norms which for d-dimensional
vectors reads |x|, > ﬁ |x[l;. Applying this to the real vector

whose components are given by x; = |A;|| yields

2
> IAR > ;(Z ||A,~|) :
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Putting the two inequalities together gives

2
1
2
Z(wm >~ (Z |Al-||> :
which can be bounded using Eq. (B7).

The first term in the denominator we have already bounded:

From the previous argument we see that

2
Yuals ;(2 ||A,-|) .

Bounding the last term turns out to be slightly more involved,
so we state it as a separate lemma.
Lemma 8. Let {A;}; be a d-outcome measurement acting

on C4. If
> lAl =g,
i

then
Y WA <d+d—gd—g+1).

Proof. Before proceeding to the technical details, let us
briefly explain the idea behind the proof. Suppose we are
given a partition of the d measurement outcomes into two
disjoint sets. Moreover, we are promised that the trace of the
measurement operators corresponding to the outcomes in the
first (second) set belongs to the interval [0, 1] ([1, d]). It turns
out that an upper bound on the desired quantity can be derived
in terms of simple properties of this partition. Maximising this
bound over all valid partitions leads to the main result of the
lemma.

Formally, we are given two sets X and Y suchthatX UY =
[d] and X NY = @. Moreover, we have

ieX =trA; €0, 1],
ieY =>trA; e[l,d].
Define n := |X|, y := ),y trA; and clearly
n—y>0. (C2)

Moreover, the assumption of the lemma implies

a <Y 1Al =D 1Al + Y IAl < D A+ Y]

ieX ieY ieX
=y+d-n,
and therefore
n—y<d-—gq. (C3)

For the rest of the argument let us think of n and y as some
fixed values. Once we derive the final upper bound in terms
of these two variables, we will maximize it over the allowed
pairs of n and y.

For i € X we have (tr A;)* < tr A;, and therefore

Z(trA,l)2 < ZtrAi =y.

ieX ieX

To bound the second term we must explicitly determine the
allowed combinations of {tr A;};cy. Since {tr A;}icy € [1, d]"!
and

ZtrAi:d—y,

ieY

the valid choices of {trA;},cy form a polytope. It is easy to
see that all the vertices of this polytope correspond to setting
|Y| — 1 values to 1 and the last value to [d — y — (|Y| — 1)].
Since Z[ey(trA,-)2 is a convex function of the traces, the
maximal value is achieved at a vertex, and therefore

WA <Y - D+1d—y — (Y| - DE.

ieY

Plugging in |Y| = d — n gives

DAY <d-n—1+@m—y+1)
ey

=d+m—-y)n-—y+1-vy.

Putting the two bounds together leads to

DAY = (A + ) (A

ieX ieY
Sd+m—y)n—y+1)

Now we must maximize the right-hand side subject to the
constraints given in Egs. (C2) and (C3). The maximum is
achieved when the latter is saturated, which leads to the final
result of the lemma.

The final bound reads

2
%dz(l + Smux) - %
¢ —d—(d-g)d-q+1)

%

(C4)

where smyx is the quantity defined in Eq. (B5), while ¢ is the
right-hand side of Eq. (B7).
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Abstract

In quantum mechanics performing a measurement is an invasive process which generally disturbs the
system. Due to this phenomenon, there exist incompatible quantum measurements, i.e. measure-
ments that cannot be simultaneously performed on a single copy of the system. It is then natural to ask
what the most incompatible quantum measurements are. To answer this question, several measures
have been proposed to quantify how incompatible a set of measurements is, however their properties
are not well-understood. In this work, we develop a general framework that encompasses all the
commonly used measures of incompatibility based on robustness to noise. Moreover, we propose
several conditions that a measure of incompatibility should satisfy, and investigate whether the
existing measures comply with them. We find that some of the widely used measures do not fulfil these
basic requirements. We also show that when looking for the most incompatible pairs of
measurements, we obtain different answers depending on the exact measure. For one of the measures,
we analytically prove that projective measurements onto two mutually unbiased bases are among the
most incompatible pairs in every dimension. However, for some of the remaining measures we find
that some peculiar measurements turn out to be even more incompatible.

1. Introduction

It is well-known that the concept of a measurement in quantum physics challenges our everyday intuition. Ina
classical theory objects have properties, whether we look at them or not, and a measurement simply reveals to us
their pre-existing values. In quantum mechanics, on the other hand, performing a measurement is an invasive
process, which necessarily disturbs the state (except for some special cases). Moreover, even if we have complete
knowledge about the system, we can only predict the probabilities of different outcomes, which can be
computed using the Born rule. An intriguing consequence of the quantum formalism is the existence of
measurements that are incompatible, i.e. that cannot be measured simultaneously given only one copy of the
system. The best known example consists of the position and momentum of a quantum mechanical particle,
which cannot be measured simultaneously with arbitrary precision.

In this work we study the incompatibility of measurements with a finite number of outcomes. These
measurements assign to each physical state p a discrete probability distribution { p, (p) },, whose elements we
interpret as the probability of outcome a on the state p. We say that two measurements are compatible (or jointly
measurable) if there exists a single measurement, referred to as the parent measurement, that is able to universally
replace the two [1, 2]. More specifically, on any state the outcome probabilities of both measurements can be
recovered from the outcome probabilities of the parent measurement. Therefore, the two measurements can be

©2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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performed simultaneously by performing the parent measurement. If such a parent measurement does not exist,
we say that the measurements are incompatible (or not jointly measurable). We remark here that other notions of
compatibility, such as commutativity, non-disturbance and coexistence, are also used in the literature [1, 3]; let
us for completeness briefly explain how they are related. Commutativity of a measurement pair implies non-
disturbance, which in turn implies joint measurability, which then implies coexistence. Moreover, it is known
that none of the converse implications hold in general, therefore these notions are strictly distinct [4]. In this
work we focus solely on the notion of joint measurability, because the existence (or not) of a parent
measurement has a clear operational meaning. Therefore, throughout the present paper we use the terms ‘(in)
compatibility’ and ‘(non-)joint measurability’ interchangeably. It is important to notice that whenever two
measurements are compatible, they cannot be used to produce quantum advantage in tasks like Bell nonlocality
[5] or Einstein—Podolsky—Rosen steering [6, 7]. Moreover, it was recently shown that joint measurability is
equivalent to a specific notion of classicality, namely, preparation non-contextuality [8, 9]. Hence, one may
think of compatible measurements as ‘classical’, and incompatible measurements as a resource for the above
tasks. Therefore, it is of fundamental importance to characterise and understand the structure of incompatible
measurements.

What is particularly important is to go beyond the dichotomy of compatible and incompatible
measurements, and quantify fo what extent a pair of measurements is incompatible. A natural framework for this
quantification, often used in the literature, is to define measures based on robustness to noise. Briefly speaking,
robustness-based measures of incompatibility quantify the minimal amount of noise that needs to be added to a
pair of measurements to make them compatible. The more noise is required, the more incompatible the
measurements are. Note that measures of this type are directly relevant to experiments, because in real-world
implementations measurements are always noisy, due to inevitable experimental imperfections.

Robustness-based measures are also natural measures of incompatibility in the context of resource theories
[10, 11]. Here one considers a set of ‘free’ objects (compatible measurements) and quantify the usefulness of
‘resource’ objects (incompatible measurements) by so-called resource monotones. While in this work we do not
develop a full resource theory of incompatibility, we note that robustness-based measures are good candidates
for resource monotones if they satisfy certain natural properties [12—15]. In resource theories one defines ‘free
operations’ that do not create resource (that is, do not map compatible measurements to incompatible ones).
Properly defined resource monotones should then be monotonic under such free operations. Once measures
with the desired properties are found, the question ‘what are the most incompatible pairs of measurements?’ is
well-defined with respect to each of these measures.

Several robustness-based measures have been proposed in the literature (see [ 16] for an introduction), the
essential difference between them being the assumed noise model. Nevertheless, some basic properties of these
measures have not been determined and little effort has been dedicated to understanding the similarities and
differences among them. In this work we make the following contributions to fill this gap.

+ Wedevelop a framework in which a robustness-based measure can be defined with respect to an arbitrary
noise model. We identify the minimum assumptions on the noise model that ensure that the resulting
measure satisfies some basic requirements, i.e. we provide an explicit connection between the properties of the
noise model and the desired properties of the measure.

+ Weapply our framework to study five measures already introduced in the literature in a unified fashion. By
giving explicit counterexamples we show that some widely used measures do not satisfy certain natural
properties motivated by resource theories.

+ We show that when looking for the most incompatible pairs, we obtain different answers depending on the
specific measure of incompatibility. For one of the measures we analytically prove that mutually unbiased
bases (MUBs) are among the most incompatible pairs of measurements in every dimension. For three other
measures we can explicitly show that, for dimensions larger than two, MUBs are not among the most
incompatible pairs. Our study for the last measure is inconclusive.

In section 2 we define incompatibility robustness in a fashion that is independent of the specific noise model,
introduce the natural properties that the measures should desirably satisfy and relate them to the properties of
the noise model, formulate the notion of most incompatible measurement pairs, and discuss the measures’
semidefinite program (SDP) formulation and how to use this formulation to derive bounds on them. Then in
section 3 we introduce the five measures already used in the literature, illustrate them on a simple example,
analyse their relevant properties, and derive new bounds on each of them. At the end of this section we discuss
the relations between the measures, apply our results to compute all the different measures for MUBs, then
summarise the main results in a compact form. In section 4 we address the question of the most incompatible
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pairs of measurements under the five measures. Finally, in section 5 we summarise the new findings and pose
some important open questions arising from our work.

We note here that the notion of incompatibility naturally generalises to more than two measurements, but
for simplicity in the main text we restrict ourselves to pairs of measurements. For a formal treatment of larger
sets of measurements, and results regarding them, we refer the interested reader to appendix E.

2. Definitions and basic properties

In this section we formalise the main definitions and concepts outlined in the introduction. We give a
mathematically precise definition of (in)compatibility and of robustness-based measures for an arbitrary noise
model. Then we specify a few natural properties the measures should satisfy, and give concrete conditions on the
noise model under which these are automatically fulfilled. We also rigorously formulate the notion of ‘most
incompatible measurements’, and discuss how to efficiently search for them. Finally, we introduce the notion of
SDP, and how to use it to derive bounds on robustness-based measures.

2.1. Incompatible measurements

Throughout this paper we analyse the most general model of quantum measurements, positive operator valued
measures (POVMs). For this model, we establish that the physical system lives on a d-dimensional Hilbert space,
H =~ C“.The relevant objects are all elements of the set of linear operators on this space, B(C¢). The state of the
system is described by a positive semidefinite operator with unit trace, denoted by p. APOVM with n outcomes
is a set of n positive semidefinite operators, {A, };_,,such that >, A, = 1, where 1 is the identity operator. The
probability of observing outcome a is given by the Born rule, p,(p) = tr(A, p). In the following, we will use the
terms ‘measurement’ and ‘POVM’ interchangeably.

We will often refer to the following three important classes of POVMs. Rank-one POVMs are measurements
whose elements are rank-one operators, A,  |¢,) (¢, where |¢,) (¢,| is the projector onto |¢,) € C?. Note that
such measurements cannot have fewer elements than the dimension of the Hilbert space, that s, n > d with the
above notation. Projective measurements are POVMs whose elements are projectors. Note that such
measurements cannot have more non-zero elements than the dimension of the Hilbert space. Since the set of
measurements with 7 outcomes acting on dimension d is a convex set, we will talk about extrernal POVMs (in the
convex geometry sense). Recall that every POVM can be written as a convex combination of extremal POVMs
and these have been extensively studied in [17].

The ability to recover the outcome probabilities of two POVMs on any state from the statistics of a single
measurement is referred to as joint measurability and can be formulated in the following way.

Definition 1. Given two POVMs, {A,};1 | and {B,}}? |, we say that they are jointly measurable (or compatible) if
there exists a POVM { Gy };2'f, _ such that 3% | G = A, foralla,and > | Gay = Byforallb. We call sucha
POVM a parent measurement of {A,};L, and {By}}2 .

This definition captures the idea that the parent measurement provides a joint outcome distribution of the
two initial measurements on every state. It is worth pointing out that the notion of joint measurability in which
the parent POVM is allowed an arbitrary (finite) outcome set and arbitrary classical post-processing turns out to
be equivalent to the one above (see e.g. [16], section 3.1).

We note that a parent POVM is not necessarily unique for a fixed pair of measurements [18, 19]. Itis clear
that in order to recover the outcome probabilities of A and B, one only needs to measure G and add up the
relevant probabilities (in the following we sometimes drop the outcome indices to refer to the POVMSs, when it
does notlead to confusion; this notation is to be understood as A = {A,} ;). A simple example of a jointly

ny ng a1
measurable pair is the trivial measurement pair, { "l } and { 1 } with the parent POVM { ! } .In
A b=1

a=1 "z "l ) g=1,b=1
factany POVM pair with pairwise commuting measurement operators, [A,, By] = 0 for allaand b, is jointly
measurable. This can be seen by employing the parent POVM G with elements G,;, = A, By, which is guaranteed
to be positive in this case. Note that commutativity becomes necessary and sufficient if one of the two
measurements is projective, see [ 18], proposition 8 for a proof.

If a parent POVM does not exist, we say that A and B are not jointly measurable (or incompatible). A standard
example of incompatible d-outcome measurement pairs in dimension d > 2 is a pair of projective
measurements onto two MUBs [20]. These consist of rank-one projectors AMYB = {|) (|} 9_, and
BMUB — (|3} (43|} §_, onto the orthonormal bases {|,) } ?_, and {|1),) } {_, such that all the pairwise overlaps
(moduli of inner products) are uniform: | (g,|¢p) |=1 / Jd forall a, b. As these measurements are projective and
non-commuting, they are incompatible.
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In the following we will denote the set of POVM pairs with outcome numbers 71,4 and n5 in dimension d by
POVM*", and its elements by (A, B). Note that POVM pairs inherit the convex structure of POVMs (denoted
by POVM)), therefore convex combinations of them are well-defined. For the subset corresponding to jointly
measurable pairs, we will use the notation JM*", but drop the indices whenever it does not lead to confusion.
Note that the set JM/}*"* is a convex subset of POVM/{*": it is straightforward to verify that if (A°, B®) € JM/j>"
with parent POVM G, and (A!, B') € JM"" with parent POVM G', then (1 — p)(A°, B%) + p(A!, B') € JM/p»™
with parent POVM (1 — p)G® + pG'forall p € [0, 1]. That s, taking convex combinations preserves joint
measurability.

2.2. Incompatibility robustness
In order to talk about noisy measurements, we define what we mean by a noise model.

Definition 2. A noise model N isamap N: POVM]; — P(POVM}), where PP is the set of all subsets, that maps
every POVM A € POVM], to a subset of all n-outcome POVM:s in dimension d, that is,
N: A — Ny € POVM);. We will refer to N, as the noise set of A under this noise model.

Given a noise model, we can define noisy versions of POVMs as convex combinations of POVMs with
elements of their corresponding noise sets. Specifically, if M € Ny and 57 € [0, 1], then a noisy version of A with
visibility n)is the POVM

nA + (1 — n)M € POVMY,. (1

Noise models will be crucial for our analysis, as different noise models give rise to different measures of
incompatibility. Initially, for a unified treatment of robustness based measures, we will discuss properties that do
not depend on the precise choice of the noise model, and only introduce explicit choices in section 3, where we
analyse the five specific measures.

In order to apply it to incompatibility, we extend the concept of a noise model to pairs of measurements:
in this case, the noise model N isamap N: POVM*"# — P(POVM!/*"#) that maps every pair (A, B) €
POVM!;*" to its corresponding noise set, N: (A, B) — Ny 5 € POVM/*"™. Note that the set Ny g may actually
depend on the measurements A and B, and not simply on their dimension or number of outcomes (whenever

the map N is not constant). The simplest example of a noise modelis Ny 5 = { ( { nl} " {ni} 3 1) }, that maps
'A B

every POVM pair to the one-element set containing only the trivial measurement pair. On the other end of the
spectrum, the largest possible choice of the noise model is Ny 3 = POVM/*™, mapping every POVM pair to the
setof all POVM pairs.

We will now define a measure of incompatibility corresponding to an arbitrary noise model. To ensure that
the measure is well-defined, we require that the map N is such that for every pair (A, B) the noise set Ny 5
contains at least one jointly measurable pair. For any such noise model, one can define an incompatibility
robustness measure for pairs of POVMs, i.e. the maximal visibility at which the noisy pair is still compatible.

Definition 3. Given two POVMs, {A,}7 ; and {Bb}ZB: ,on €4, and a noise model N, we say that the
incompatibility robustness 1j, , of the pair (A, B) with respect to this noise model is
= sup  (nlne (A B+ (=) - M, N) € M), @
nelo,
(M,N)ENy,p
This definition has a clear geometric interpretation, see figure 1. Note that regardless of the choice of the noise
model, 77?; 5 = lifandonlyif A and B are jointly measurable, and that under this definition the lower 77’2, s, the
more incompatible the measurements are.

There are several other requirements one might impose on the noise model. Let us briefly discuss some of
these and explain what their consequences are.

+ Ifwe assume that for every pair (A, B), the noise set Ny g is closed, we are guaranteed that the supremum is
achieved, i.e. there exists an optimal noise pair. In this case the supremum in equation (2) can be replaced by a
maximum. Note that since we are dealing with finite-dimensional objects, it is irrelevant which topology we
choose to define the notion of closedness.

+ Ifwe assume that for every pair (A, B), the noise set Ny g is convex, we are guaranteed to find a decomposition
of the form given in equation (2) forany 7 € [0, 1} ). It suffices to find a noise pair (M’, N’) and a visibility
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Ny (A B)+(1—nyp) (M,N)

Figure 1. Schematic representation of a generic incompatibility robustness measure for a noise model which maps to closed and
convex sets. Note that in general the noise set Ny 5 need not be contained in the jointly measurable set JM. One can also easily infer
that the optimal noise pair (M, N) mustlie on the boundary of Ny 5 and that the optimal noisy pair

UTLH (A, B)+ (1 — 111:’3) - (M, N) must lie on the boundary of JM.

1’ > nsuch that
-, B+ (1 -7 - (M,N)eIM. 3)
Such (M’, N')and 7’ are guaranteed to exist, since ) < 17”/;, - Then pick (MM, N'M) e N, p such that
(MM, N™M) € M, )

which is again guaranteed to exist by our fundamental assumption on the noise model. From the convexity of
JM it follows that taking the convex combination of equation (3) with weight 1/7’ and equation (4) with
weight (1 — n/n/)leadston - (A, B) + (1 — 1) - (M, N) € JM, where

1—7

R
LT, N’>+(1 S —]-(MIM, NIM), 5)
Ul

/

(M, N) = 1

and the convexity of Ny g ensures that (M, N) € Ny p. Note thatalooser constraint, namely that Ny pisa
radial setat (M™, N'M) (the line segments between (M'™, N'M) and all other elements of N, p are contained
in Ny p) is sufficient for this property.

Another property one might require from the noise set is covariance with respect to unitaries. Intuitively, this
means that if two pairs of measurements are related by a unitary, then so should be their respective noise sets.
More specifically, if (A, B)and (A’, B') satisfy

A, = UA,U" and B, = UB,U* (©6)
for all outcomes a and b and for some fixed unitary U, then
(M, N) € Ny 3 < (UMUT, UNU") € Ny . (7)

This property is sufficient to ensure that the resulting incompatibility robustness measure is unitarily
invariant, i.e. ’r/ﬁ 5= T]j;, B

Finally, one might require that for every choice of (A, B) the corresponding noise set Ny g is invariant under
unitaries, i.e.

(M, N) € Nyp = (UMUT, UNUT) € Ny 5 (8)

for every unitary U. An advantage of this property is that if we assume that the noise set is convex, then we can
average over the Haar measure on unitary matrices, which leads to a noise pair whose every element is
proportional to the identity operator. We will use this property in section 2.4 to derive non-trivial lower
bounds on the resulting incompatibility measure.
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The last two properties are clearly related. Indeed, if the noise set does not depend on the pair (A, B) beyond
the dimension and the outcome numbers (the map N is constant), they turn out to be equivalent. However, in
full generality these two properties are independent, i.e. we can have one without the other. To conclude let us
simply state that all the measures considered in this work satisfy all the requirements stated above.

In section 3, we will replace the star in 77:,  With a reference to the specific noise model in order to make clear
which measure we use. In general we are looking for noise models that give rise to measures of incompatibility
that satisfy certain natural properties motivated by resource theories.

2.3. Monotonicity

The natural properties we consider capture the intuition that measures of incompatibility should not decrease
under operations that do not create incompatibility. In other words, measurements should not become more
incompatible under such operations. This is well-motivated from the resource theoretic point of view, allowing
for a partial order of measurement pairs based on their incompatibility robustness.

Consider an operation ®: (A, B) — ®(A, B), that maps every POVM pair to another POVM pair, not
necessarily preserving the dimension or the outcome numbers. We say that this operation is joint measurability-
preservingif forall (A, B) € JM we have that ®(A, B) € JM. Itis desirable that our measures are non-
decreasing under such operations, that is, 7} B > 77*/; 5 for every joint measurability-preserving operation . If
this inequality holds for every (A, B) we say that 1 is monotonic under .

Whenever the joint measurability-preserving operation @ is linear, a simple property of the noise model N
implies monotonicity, namely, ®(Ny 5) C Noa,p) forall (A, B). To see this, consider a measurement pair
(A, B) andits corresponding noise set N4 . Following from definition 3, we have that

Mg (A B + 1 =1, (M, N)eJM ©)

forsome (M, N) € Ny . Applying @ to the left-hand side, we obtain

1y g @A, B) + (1 — 1 p) - ®(M, N) € M, (10)

as ® is linear and joint measurability-preserving. Whenever ®(Ny 5) C N4, p), the left-hand side of

equation (10) is a noisy version of ®(A, B) with visibility 7]1  which implies that »} wp > n’;, - Therefore, if
the image of the noise set under ® is contained in the noise set of the image for every measurement pair, then n*
based on this noise model is monotonic under ®. In many cases, the stronger property ®(Ny 3) = Ng(4,5) holds
forall (A, B),and then we say that the noise model is invariant under ®.

In this paper we will consider two natural classes of joint measurability-preserving operations, which are
transformations of the measurement outputs and inputs. The first class acts on the outputs of the measurements
and is therefore called post-processings. The second class, on the other hand, acts on the inputs (quantum states)
of the measurements, and is accordingly called pre-processings (see figures 2 and 3, respectively). Post-
processings amount to recording the outcome of the measurement and then applying a response function to it. It
can therefore be formulated in the following way.

Definition 4. A post-processing 3 maps {A, ]}~ to {Aﬁ }%_, where

Al = Z B(d'la) A, (11

a=1

and {3(a’|a)} , is a probability distribution for every a € {1, 2,...,n4}.

A post-processing is called deterministic if the probability distribution { 3 (a’|a)} , is deterministic for all
a € {1, 2,...,m}, thatis, 8(a’la) € {0, 1}.1fsuch a post-processing decreases the number of outcomes, it is
referred to as coarse-graining or binning, e.g. the operation mapping the POVM {A;, A,, As}to (A}, A + Az}
What is important is that every POVM can be obtained by coarse-graining a rank-one POVM with potentially
more outcomes.

Note that post-processings preserve the dimension but might change the outcome number. For pairs (A, B)
the operation ®°: (A, B) +— (A%, B%)isjoint measurability-preserving (note that the post-processings applied
to A and Bare independent): assume that (A, B) € JM with parent POVM G. Then it is straightforward to verify
that (A%, B%) € JM with parent POVM G”, where Gﬁb, =Y. Oa(@'|a) Bp(b'|b) Gy

The second class, pre-processings, amounts to first applying a quantum channel to the measured state and
then performing the measurement. Denoting the channel acting on the state by A (the dual of the map A), we
arrive at the following definition.
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eaf s

Figure 2. Schematic representation of a post-processing of a measurement.

p AT’AT(p) A’ a

Figure 3. Schematic representation of a pre-processing of a measurement.

Definition 5. A pre-processing A maps {A, )™, to {A2} ", where
Al = MA), (12)
and A: B(C?) +— B(C®)isa completely positive unital map.

Note that, for our formal treatment the unital map A does only need to be positive (and not necessarily
completely positive), although all the positive unital maps appearing in this work are also completely positive.

A well-known example of pre-processings is the one in Naimark’s dilation theorem. This states that for every
POVM A on C%, thereexists d’ € N, an isometry V: C? — C¥ anda projective measurement P on C? such
that A, = VTP,V foralla, thatis, A = P*, where A(.) = V¥(.)V isa(completely) positive unital map. That s,
every POVM can be obtained by pre-processing a projective measurement acting on a potentially higher
dimensional Hilbert space.

Note that pre-processings preserve the outcome number but might change the dimension. For pairs (A, B)
the operation ®*: (A, B) — (A%, BA) isjoint measurability-preserving (in contrast to the case of post-
processing, here there is just a single pre-processing applied to both A and B): assume that (A, B) € JM with
parent POVM G. Then it is straightforward to verify that (A*, B*) € JM with parent POVM G*. Note also that
an incompatibility measure that is monotonic under pre-processings necessarily satisfies unitary invariance, as
already mentioned in [12], section C.

Finally, let us consider another natural operation that preserves joint-measurability, although itis of a
different flavour than pre- and post-processings. Namely, recall that taking convex combinations preserves joint
measurability, that s, for any (A%, B%) € JM and (4!, B") € JM we have that (A?, B?) = (1 — p)(A°, B®) +
p(AY, BY) € JMforall p € [0, 1](see section 2.1). For this reason, it is desirable that our measures do not
decrease under taking convex combinations, that is, njp, B = min{n”;\o’ B 77”:‘1, B forall p € [0, 1],aproperty
sometimes referred to as quasi-concavity.

It is easy to see that this condition holds whenever the noise model satisfies the simple property that,using the
above notation,for any (M?, N°) € N goand (M!, N!) € Ny p,we have (MP, N¥) = (1 — p)(M° N°) +
p(M', N') € Ny pr. To see this,let us define nj;in = min{ nio) s nj,’ 1} From the convexity of the noise set,
there exist (M°, N°) € Ny gand (M', N') € Ny psuchthat . - (A%, B%) + (1 — 7%, ) - (M° N°) € JM
and 7. - (AL, BY + (1 — ) - (M, N') € JM (see section 2.2). Taking a convex combination of these two
relations with coefficients 1 — p and p, respectively, resultsin n:]in - (AP, BP) + (1 — n;in) - (MP, NP) € M,
that s, nj,,, g = min{ 77920, s 77’2,’ - All the noise models considered in this paper satisfy the requirement stated
above and therefore the corresponding measures are non-decreasing under convex combinations.

A stronger property that is often desired is joint concavity, which using the above notation reads
77";‘1,, B = pnjo’ pt 1= p)njl, » (note that throughout this paper we will write ‘concavity’ and ‘convexity’

7
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instead of ‘joint concavity’ and ‘joint convexity’, for simplicity). However, what one naturally deduces by looking
at the noise model turns out to be slightly different. More specifically, if the noise set is convex for every pair
and the noise model is a constant map we may conclude that the inverse of the measure is convex, i.e.
1 / njp, p < (1 —p) / 77?';0, ptP / nj,’ v similarly to the proofin [21], proposition 2. It is easy to see that the
concavity of i7* implies that 1/7* is convex [22], equation (3.11), but the converse does not hold in general. In
fact, in appendix A, using an explicit counterexample, we show that none of the measures studied in this paper
are concave. Itis common to use the measure t* = 1/n* — 1instead of * because it is easy to prove its
convexity, and it also has the appealing property that it vanishes for every (A, B) € JM (a property referred to as
faithfulness in [23]—also note that in [24], faithfulness, post-processing monotonicity and convexity were
postulated as natural properties of any measure of incompatibility). Moreover, whenever n* is monotonic under
pre- or post-processings, then so is t* (with opposite relation in the inequality defining monotonicity).
Nevertheless, in the following we will study n* since it suits our purposes better and it is easily
interconvertible with *.

In section 3, we will investigate the properties introduced above for each specific measure. As all these
measures are quasi-concave and none of them are concave, we will only explicitly address pre- and post-
processing monotonicity of n*, and convexity of the corresponding inverse measure, £*.

2.4. Most incompatible measurements
For any given measure of incompatibility, one can ask what the most incompatible pairs of POVMs are. To make
this question well-defined, we introduce the following quantity.

Definition 6. Given a measure of incompatibility, n*, we define x*(d; n4, np) to be its lowest possible value for
dimension d and outcome numbers 1,4 and ng.

X*(d; na, ng) = min {1f; ; | (A, B) € POVM}""}. (13)

The minimum in this definition is justified, as the set POVMj*" is closed and bounded. For a fixed measure this
definition yields a real number from the range [0, 1] for all positive integers d, 1y, ng. Sometimes, however, we
might be interested in less detailed information. We might just ask the question ‘what are the most incompatible
measurement pairs in dimension d?’, regardless of the outcome numbers, leading to the quantity

x*(d) = inf x*(d; na, np), (14)

naNnp

where the infimum is taken over positive integers and it is not clear whether x*(d) is achieved for any finite n,
and np. Alternatively, we might only fix the outcome numbers, leading to x*(n4, np), or fix neither the
dimension nor the outcome numbers, leading to x*.

One might wonder whether a non-trivial lower bound on \* can be derived based only on the previously
assumed property of the noise model, namely, that for every POVM pair the corresponding noise set contains
atleast one jointly measurable pair, but this turns out not to be the case. For every pair of incompatible
measurements (A, B) we can choose the noise set to contain a single jointly measurable pair with the property
that the interior of the line segment connecting (A, B) and the noise pair lies outside the jointly measurable set.
Clearly, in this case 77’:) » = Oforallincompatible pairs (A, B), and ™ defined through this construction is just
the indicator function of joint measurability.

However, a mild additional assumption on the noise model allows us to get a non-trivial lower bound on x*.
Suppose that for every incompatible pair (A, B) there exists a valid noise pair (M, N) such that the
measurement operators of A commute with those of N and similarly the measurement operators of Bcommute
with those of M. Then, the POVM given by

1
Gap = E(AaNb + M. By) 15)

is avalid parent POVM for %(A + M)and %(B + N), therefore it ensures that nj 5= %, and we conclude that

x> % Clearly, the above condition is fulfilled whenever we are guaranteed to find a noise pair where all the
elements are proportional to the identity (a direct consequence of the unitary invariance property discussed in
section 2.2). This is the case for all the measures that we study.

To make the search for the most incompatible pairs of measurements efficient, it is crucial to identify
operations under which the measure is monotonic, as it significantly shrinks the set over which we need to
optimise. Specifically, if we want to compute x*(d; n4, 1) and we deal with a measure that is non-decreasing
under convex combinations, we only need to consider pairs of extremal measurements. If our goal is to compute
x*(d), i.e. we do not care about the number of outcomes, and our measure is monotonic under post-
processings, we do not need to consider measurement pairs that are post-processings of another pair. Since every
POVM can be written as a post-processing (coarse-graining) of some rank-one POVM with possibly more

8
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outcomes, for post-processing monotonic measures the value x*(d) can be found by searching only over rank-
one measurements. Similarly, if we aim to compute x*(n4, np), i.e. we do not care about the dimension, and our
measure is monotonic under pre-processings, we do not need to consider measurement pairs that are pre-
processings of another pair. Due to Naimark’s dilation theorem, every POVM can be obtained by pre-processing
aprojective measurement that possibly acts on a higher dimensional space, therefore projective measurements
achieve x*(n,, np) for pre-processing monotonic measures.

2.5. Semidefinite programming

Itis clear from equation (2) that incompatibility robustness measures are defined through an optimisation problem.
The class of optimisation problems that arises in our case is called SDP and can be seen as a generalisation of linear
programming [22]. An SDP is an optimisation problem whose optimisation variables are matrices, and whose
objective function and constraints are linear functions of these variables. The constraints can be either matrix
equalities or matrix inequalities (recall that for matrices the inequality A > B isequivalentto A — Bbeinga positive
semidefinite matrix). For every SDP, later referred to as the primal, another SDP, called the dual, can be defined such
that its solution bounds the primal one. In this paper the primal SDP is a maximisation problem and the dual SDPis a
minimisation problem whose solution upper bounds the primal solution. In all the examples that we study in this
work, the solutions of these two SDPs in fact coincide, as we will see in section 3.1.1. Thanks to this feature, it is
possible to efficiently solve such SDPs on a computer, which gives us a tool to study incompatibility robustness
measures numerically. This tool we often employed using the MATLAB computing environment together with the
YALMIP [25], SDPT3 [26] and MOSEK [27] optimisation toolboxes. However, the main objective of our work is to
study these measures analytically. In order to do so, we find feasible points for the SDPs, that is, assignments of
variables that satisfy all the constraints, but that are not necessarily optimal. By finding feasible points for the primal
and dual problems, we obtain lower and upper bounds, respectively, on the value of the optimisation problem. In the
next two sections we introduce objects that will come in useful for finding such feasible points.

2.5.1. Lower bounds

Feasible points for the primal SDP lead to lower bounds on the incompatibility robustness. For a fixed pair

(A, B) feasible points correspond to a noise pair (M, N), avisibility 7, and a parent POVM G for

n- (A, B) + (1 — n) - (M, N),all of these satisfying the constraints of the SDP. That is, the noise pair should
satisfy (M, N) € Ny 3, and the visibility must be in the range 1 € [0, 1]. Crucially, the parent POVM G should
givenA + (1 — n)M and nB + (1 — n)N as marginals (which also guarantees its proper normalisation), and
all its measurement operators should be positive semidefinite. In order to find feasible parent POVMs satisfying
these properties, we introduce an ansatz solution. This ansatz encompasses all possible choices of the parent
POVM elements that are linear combinations of the elements of A and B, their square-roots, and products
thereof, such that the normalisation of the parent POVM is ensured. Namely, let

1 1 1 1
Gap {Am Bb} + (abAa + ﬁaBb) + 'Yabjl + 6(AuszAa2 + thAaBbz) (16)

for some real parameters oy, (3, 7, and 0. Itis clear then that 3~ , G o< 1.

In this construction the anticommutator term plays a crucial role. When the measurement operators of the
two POVMs commute, i.e. we have A, B, = ByA, forall aand b, the anticommutator is guaranteed to be
positive semidefinite. We can therefore set G,;, = % {A,, By}, whichisavalid parent POVM for A and B. For
non-commuting measurement operators, however, the anticommutator might have some negative eigenvalues
for which the remaining terms are supposed to compensate. Note that the same construction for parent POVMs
has recently been used in [28].

For a pair of rank-one POVMs checking the positivity of equation (16) becomes analytically tractable: in this
case we can write the operator as a direct sum of an operator acting on the two-dimensional subspace spanned by
the eigenvectors of A, and By, and a multiple of the identity on the orthogonal subspace (which is non-trivial for
d > 3). This allows us to explicitly compute the eigenvalues and check positivity. For this reason, for our
methods to work efficiently and provide tight bounds, it is extremely important that the measure we study is
monotonic under post-processings. This is because in this case it is enough to look at rank-one POVMs in order
to find the most incompatible pairs, and the robustness of any POVM pair can be bounded by the robustness of
their rank-one decompositions.

Note that computing the marginals of the POVM in equation (16) is also easy in general, except for the terms
multiplying the parameter 6. However, for most constructions we will choose 6 = 0, and only include this term
in a special (albeit very important) case.

As an example, let us present a known result initially presented for pairs in [29] and then generalised to
arbitrary number of measurements [16, 30, 31]. The idea is to try to perform two measurements simultaneously
by duplicating the input state and then feeding each measurement with one of the copies. By virtue of the

9
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no-cloning theorem, the duplication process cannot be perfect. Thanks to a duality between noiseless
measurements acting on noisy states and noisy measurements acting on noiseless states, one can obtain a parent
POVM from this procedure

o 1

S 2d+ D)

which is indeed of the form (16). The positivity of G,;, defined in this way follows straightforwardly from the fact
that[A, /tr(A,) + By/tr(By)]* > 0 (we assume that trA,trB, > 0; the other cases are trivial). This parent
POVM gives rise to a universal lower bound on some measures, see equation (26).

Gap [{Aaa Bb} + tr(By) Ay + tr(A,) Bpl, (17)

2.5.2. Upper bounds
In order to derive upper bounds on incompatibility robustness measures, we need to find feasible points for the
dual SDPs. These SDPs have a similar structure for all the different measures that we study in this work, and
therefore some quantities will often appear in the upper bounds. For this reason, we define them here:

trA? trB?

-y

where Sp(M) is the spectrum of the operator M (note that A, + By, is always positive semidefinite). It is easy to
see that f < 2 and the inequality is saturated if and only if both measurements are projective. We will also need
the following four quantities:

trA, ) trBy \? 1 1
e Ry

a b Ny ng

and \ = mal;x {max Sp(A, + By)}, (18)
a,

gP = min trAa + miny ﬂ, and ¢/ = min {min Sp(A, + Bp)}. (19)
a d d a,b
Note that g4 = ¢" = gP = 2/d whenever both measurements are rank-one projective.

2.6. Example
We will compute all the studied incompatibility robustness measures for a pair of rank-one projective qubit
measurements parametrised as

Aql0) = %[Jl + (=1)%cosf o, + sinf o,)] and By(0) = %[]l + (=1)(cos b o, — sinf a,)], (20)

where 0, and o, are the Pauli Zand X matrices, § € [0, 7/4]and a, b = 1, 2. Note that we choose the angle 0 to
be half of the angle between the Bloch vectors of the two measurements. For this pair of rank-one projective
measurements, we can compute the different parameters defined in equations (18) and (19), namely, f = 2,
A=1+cosf,gd =g =gl =1,and g™ = 1 — cosd. In the following, when discussing any measure of
incompatibility for this pair, we will use 7} as a shorthand for 7} .50 We will also make use of the following
compact notation to write down the primal and dual variables:

|G G R Y
G= [GZI Gzz] and (X,Y) = ([Xz]’ [Yz]} 21)

where the elements G, X, and Yy are 2 X 2 Hermitian matrices.

3. Five relevant measures

In this section we introduce five different explicit noise models, which give rise to five different robustness-based
measures of incompatibility that are commonly used in the literature. For each measure we write down both the
primal and the dual SDPs, analyse their desired properties, illustrate their computation on a pair of rank-one
projective qubit measurements, and derive explicit lower and upper bounds on them. A compact summary of
the main results can be found at the end of this section in table 1.

3.1. Incompatibility depolarising robustness
3.1.1. Definition and properties
In this case the noise model is defined by the map

1, 1™ 1; )™
Nd  — A, _d} , { B _d} X 22
A,B {({tr( )d . tr( b)d - (22)

10
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The noise set depends on the specific measurements, which makes this measure different than all the other
measures considered in this work. It has been investigated in many works [12, 28, 30, 32-36], often in relation
with Einstein—Podolsky—Rosen steering. This specific type of noise has also been considered in scenarios
different from incompatibility [37]. The physical motivation is as follows: take a depolarising quantum channel
Af](.), which acts on states as A'f](p) =np+ (1 —n) tr(,o)Jl/d, that is, by mixing them with white noise.
If we measure a system that has undergone such an evolution, we obtain the outcome probabilities
pa) =tr [AaAj](p)] = tr[A,(A) pl, where A, (Ay) = nA, + (1 — n)tr(A,)1/d is the dual of the depolarising
channel, which leads precisely to the type of noise set defined in equation (22).

The corresponding incompatibility robustness, as introduced in definition 3, can be computed via the SDPs

r(réa)i n I{Elgl 1+ Z tr(X,A,) + Z tr(Y,By)
51 Gab fab ata P b
st Gu =0, <1 Uik .
5 1 st Xo=X), %W=Y, X,+Y% >0
nA,B = ; Gap = nAa + (1 - T])trAaE =9 1+ Z tr(XuAa) + Z tr(YZ,B;,) > (23)
a b
1
3 Gao = nBy + (1= myuBy— =3 trjatrxa Ly trfb Y,
a a b

where in the following the first formulation will be referred to as the primal, and the second as the dual. The
primal variables G, and 77 are simply the measurement operators of the parent POVM and the visibility,
respectively. The dual variables X, and Y}, are Lagrange multipliers corresponding to the primal equality
constraints. Note that the normalisation of G is not enforced as it follows from the other constraints. For an
explicit derivation of the dual problem, see [36], appendix A. Slater’s theorem states that whenever a strictly
feasible point (a point satisfying all the constraints strictly) exists for either the primal or the dual, the duality gap
is zero, thus the primal and dual solutions coincide [22]. In this case, we can take X, = ¥, = 6 1, whichisa
strictly feasible point of the dual for sufficiently large 6. Thus, the theorem applies and justifies the equality
between the two problems in equation (23). Similar arguments apply to all pairs of primal-dual SDPs that we
discuss in this work.

As the noise set N‘}q) p defined in equation (22) is invariant under post-processings by linearity of the trace, it
follows from section 2.3 that 19 is monotonic under post-processings. It turns out, however, that 774 does not
satisfy the other two natural properties introduced in section 2.3, namely monotonicity under non trace-
preserving pre-processings and convexity of the inverse; see appendix A for counterexamples. Note that the
monotonicity under pre-processings was incorrectly claimed in [12], proposition 2.

3.1.2. Example
From aresult by Busch [38], theorem 4.5 on the joint measurability of pairs of two-outcome qubit
measurements, also rephrased by Uola et al more recently [39], section III C, we get

1

d
0= ———
To cosf + sinf

(29)
This value is plotted in figure 4 together with the other measures. For completeness and later reference, we give
optimal solutions to both the primal and the dual stated in equation (23)

-0 . 11— o

cosf sin 6

1

cos + sinf sind 1+ 0 os0 1+ o,

_ 1 ]l+(0-z+0—x) Jl+(UZ—0x)
* 1 = 4(cosf + sin6) ([ﬂ —(oz + Ux)]’[] —(o; — Ux)]}

where we have used the notation introduced in equation (21).

(25)

3.1.3. Lower bound
As mentioned before, alower bound on 79 is already known [16, 29-31]. The parent POVM given in
equation (17) is indeed a feasible point for the primal in equation (23) together with

1 1
n_5(1+—d+1). (26)

For a pair (A, B) of rank-one measurements in dimension d > 2, this bound can be improved. Let us
introduce a feasible point for the primal in equation (23) with G of the form (16), where

11
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(ab) =24 Jd*+4d— 4 (trB;,)
= ,

Ba trA,

d+2—Jd>+4d — 4

S Designolle et al

2
trA,trBy, and 6 =0. (27)

’Yab(

2d

For a proof that this leads to valid measurement operators G, and for a measurement-dependent refinement we
refer the reader to appendix C.1.1. This construction gives a lower bound on 7¢ for all pairs of rank-one
measurements. However, since the measure is monotonic under post-processings, the bound is actually
universal, i.e. for an arbitrary pair (A, B) of measurements in dimension d we have

d
Nap 2

d—2+Jd>+4d — 4

4d - 1)

(28)

Importantly, this bound turns out to be strictly better than equation (26), which was the best lower bound

known so far.

3.1.4. Upper bound

Following the idea used in [36], we provide a valid assignment of the dual variables X, and Y}, for the dual
problem given in equation (23) to get an upper bound on 74, namely,

21— A,
C(f-ghd

a

and Y, =

Al— B,

T .

where fand )\ are defined in equation (18) and g4 in equation (19). Here we implicitly assume that f = g9, but
one can show that the equality f = g4 holds ifand only if all POVM elements of A and B are proportional to 1, in
which case the pair is trivially compatible (see appendix E.3.1). The resulting upper bound is given by

A _
< 22

=1

f-g

f— A
- (30)
=g

where the last equality makes clear that this upper bound is non-trivial whenever f >  (since f > g4 from
appendix E.3.1). In the following we always implicitly assume that this condition is satisfied when we discuss the

various upper bounds.

3.2. Incompatibility random robustness
3.2.1. Definition and properties
In this case the noise model is defined by the map

ol )
) o=y U)oy

asingle element containing the trivial measurement, i.e. the measurement generating a uniform distribution of
outcomes regardless of the state. It has been investigated in many works [7, 28, 31, 34, 35, 40], and also in the

framework of general probabilistic theories [41, 42].

The corresponding incompatibility robustness, as introduced in definition 3, can be computed via the

SDPs [40]
max
0:{ Gablab
s.t. Gy = 0, n <1
1
Map = S G =nAs+ (1 —n—
b 1A

1
S G =mnBy + (1 —n—
a np

1+ > tr(XaAg) + > tr(Y,By)

min
{Xa b

Xala
(Y .
st. X,=X, % =Y, Xs+%>0
1+ Y tr(X,Aq) + 3 (Y, By) (2)
a b
1 1
>y —uX, + Y, —trY,
a M » "B

Note that the normalisation of G is not enforced as it follows from the other constraints.

As the noise set Ny p defined in equation (31) is invariant under pre-processings (recall that pre-processings
are unital), it follows from section 2.3 that 7" is monotonic under pre-processings. Moreover, as this set is also
convex and independent of the specific form of A and B (the map N is constant), we know from section 2.3 that
1/n" is convex. However, this measure is not monotonic under non outcome number-preserving post-

processings, see appendix A for a counterexample.

12
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3.2.2. Example
For rank-one projective measurements 74 and " coincide, therefore
1

T d
= e — 33
o = o cosf + sinf (33)

3.2.3. Lower bound

As 1" is not monotonic under post-processings, we cannot use a solution for rank-one measurements as in
section 3.1.3 to deduce a general lower bound. Thus, we consider an arbitrary pair (A, B) of measurements in
dimension d and we introduce a feasible point for the primal in equation (32) with G of the form (16), where

ap = Lo Ba = L Yab =0, and 6§ =10 (34)
np na

from which we obtain the bound

1 1
ez =14+ —] 35
ap = 2( Jhang + 1) (33)

The positivity of this parent POVM follows from

o<mmhi ) {As, By) JKA+f%b{mmH¢_A+f%h@®

where the last inequality is dueto A? < A, and B? < By.

3.2.4. Upper bound
In the case of )" we choose the dual variables as
21— 4, 21- B,
= and Y, = (37)
T f ghd (f gd’
where fand A are defined in equation (18) and g" in equation (19). Here we implicitly assume that f = g*, but
one can show that the equality f = g* holds ifand only if all POVM elements of A and B are proportional to 1, in
which case the pair is trivially compatible (see appendix E.3.1). The resulting upper bound is given by

r <)‘_g

Nap S = (38)
R
3.3. Incompatibility probabilistic robustness
3.3.1. Definition and properties
In this case the noise model is defined by the map
Ni s = {({Pa Lafir (g, Lali2 )l 2 0,9, 2 0,3 0p, = 1= Qb}’ (39)
a b

where {p }, and {g, }; are probability distributions. This measure has been investigated in many works
[12,16,29,31, 34, 35, 42-45], and also in the framework of general probabilistic theories [46, 47].
The corresponding incompatibility robustness, as introduced in definition 3, can be computed via the SDPs

max
7I~,(Gab~}nb
(Rl min 1+ 3 (XA + Y tr(%By)
Gu>0, >0, 4 >0 Xkt
s.t. p >0, qp Yoo a b
b= Yh=1-n= ; _J) st X=X, %=V, X,+%>0 )
> a
S Gy = nAq + 1 1+ ; tr(X,A,) + ; tr(,By) > § + v
b
i > trX,, v 2>ty
> Ga = 1By + Gl § a B
a

(40)

Note that, in order to make the problem linear in its variables, we have introduced sub-normalised probability
distributions p, = (1 — n)p,and g, = (1 — 7)g,. Note also that the normalisation of G and the constraint

7 < larenotenforced as they follow from the other constraints. As the noise set NY, ; defined in equation (39)
contains both Ni, p of equation (22) and N, ; of equation (31), the constraints of the primal in equation (40) are

13
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looser than the ones in equations (23) and (32). By duality, the constraints of the dual in equation (40) are then
tighter than the ones in equations (23) and (32), which can indeed be seen by plugging suitable convex
combinations of the constraints £ > trX,and v > trijinto1 + Y, tr(X,A,) + >, tr(Y,B) = € + v.

Asthe noise set NY, ; defined in equation (39) is invariant under pre- and post-processings (by unitality and
linearity, respectively), it follows from section 2.3 that 7P is monotonic under pre- and post-processings.
Moreover, as this set is also convex and independent of the specific form of A and B (the map NP is constant), we
know from section 2.3 that 1,/7P is convex. Thus, 7P is the first measure that satisfies all the properties
introduced in section 2 except for concavity.

3.3.2. Example
The dual feasible points from section 3.1.2 satisfy the additional trace constraints of the dual given in
equation (40). Thus, the measures 74 and 1P coincide on this family of measurements:

1
[ S — (41)
o = "o cosf + sinf
Note, however, that % and 7P differ in general, even for rank-one projective measurement pairs (see section 4.3
for an explicit example).

3.3.3. Lower bound
Since the noise set NY, ; contains both Ni, pand N, pforall (4, B),lower bounds on ¢ and 7" immediately
apply to nP.

3.3.4. Upper bound
In the case of 1P we choose the dual variables as

LYy L

Xo=2—— V=2 ¢=maxtrX,, and v = maxtr, (42)

(f—ghd (f—ghd a b
where fand A are defined in equation (18) and gP in equation (19). Here we implicitly assume that f = gP, but
one can show that the equality f = gP holdsif and only if all POVM elements of A and B are proportional to 1, in
which case the pair is trivially compatible (see appendix E.3.1). The resulting upper bound is given by

A—gP
p
Map S g (43)
3.4. Incompatibility jointly measurable robustness
3.4.1. Definition and properties
In this case the noise model is defined by the map
NIy = JMj™, (44)

the set of jointly measurable pairs of POVMs with 7, and n outcomes in dimension d. To the best of our
knowledge, this measure has only been considered in [40], section II C.
The corresponding incompatibility robustness, as introduced in definition 3, can be computed via the SDPs

max

1 Gablab .
b {Habab n?}(rul}a N
st Gu>20, Y Guy=1, Hp>0 il
nim = 4 ab —] st N=N, X=X, %=Y] (45
' Z(Gab_Hub):nAa N>2X,+Y%2>0
! (A + Y (B > 1
Z(Gub — Hyp) = an a b
a

Note that the noise POVMs do not explicitly appear in the primal problem, since optimising over jointly
measurable pairs is equivalent to optimising over the parent measurement, here denoted by H. To make the
Hroblem linear in its variables, we have introduced a sub-normalised parent POVM of the noise,
H = (1 — n)H.Notealso that the constraint < 1is not enforced as it follows from summing up one of the
marginal constraints.

In analogy with 7)P, the measure 7™ also satisfies the properties introduced in section 2, namely
monotonicity under pre- and post-processings, and convexity of the inverse.

14
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3.4.2. Example
The value of this measure for a pair of rank-one projective qubit measurements is strictly higher than for the
previous measures, whenever the pair is incompatible. Specifically,

; 2
e 46
o 1+ cosf + sinf (46)

This value is plotted in figure 4 together with the other measures. Interestingly, even for such a simple example
the primal problem given in equation (45) admits multiple optimal solutions. More specifically, we obtain a
continuous one-parameter family, which reads

1-o, 11— o
r—— (1—r1)
G= 2 2
1+ o 1+ o, ’
a-n—2% 1%
2 2
1+ o, 1+ o
s * (1 —5s) +
H=1-n™ , where r = n)™(s + cosf) — s 47
( ny") 1— o -0 ny (s + ) (47)
1-9—% 11— =%
2 2

and sis a free parameter taken from the interval [0, 1] to ensure the positivity of the elements of H. Different
values of s correspond to applying noise along different axes: for s = 0 the noise only affects the X direction,
while for s = 1itonly affects the Z direction. A feasible optimal point for the dual given in equation (45) reads

X, Y) = ; [Jl — (0 + Ux):l) [Jl — (0, — Ux):l . and N= % 1L (48)
4(1 + cosf + sin@)\|1 + (o: + o) | |1 + (0. — o) 1 + cosf + sinf

3.4.3. Lower bound

Let us consider a pair (A, B) of rank-one measurements in dimension d. Finding a feasible point for the primal
in equation (45) is not an easy task, as we have to find two parent POVMs at once. For G, we make the same
choice as for 779, i.e. equation (27) in section 3.1.3. We choose the subnormalised noise POVM H to be of the
form (16) with

(O(b) —2—\/d2+4d—4(ter) N (d+2+\/d2+4d—4
5 ab =

2
Ba) ~ d trA, 2d ]trAater, and 6§ =0, (49)

which leads to

e 2yd* +4d — 4
3d -2+ VJd>+4d — 4
Details about this specific point can be found in appendix C.4 together with a measurement-dependent

refinement. As 7)™ is monotonic under post-processings, this bound on pairs of rank-one measurements
extends to all pairs of measurements in dimension d.

< 7]1/:?3. (50)

3.4.4. Upper bound
Consider the following feasible point for the dual given in equation (45):

A, -2 L, — 0 _ gim
P B S R N T O Sl LA 6D
(f—¢™d (f—¢™d f-gm 4

where fand )\ are defined in equation (18) and g’™ in equation (19). Here we implicitly assume that f = gi™, but
one can show that the equality f = g™ holds ifand onlyifall POVM elements of A and B are proportional to I, in
which case the pair is trivially compatible (see appendix E.3.1). The above feasible point immediately implies that

(52)
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3.5. Incompatibility generalised robustness
3.5.1. Definition and properties
In this case the noise model is defined by the map

NE , = POVM/"™, (53)

the set of all POVM pairs with 11, and ng outcomes, respectively, in dimension d. To the best of our knowledge,
this measure was first introduced in [21] and studied further in [7, 33, 40, 48]. Recently, it was given an
operational meaning through state discrimination tasks [13, 49, 50].

The corresponding incompatibility robustness, as introduced in definition 3, can be computed via the SDPs

max 7
0,4 Gablab min &N
st. G20, > Gyp=1 N {Xaka
g _ ab _J st N=N, N>X,+Y 54
Tas = > Gav = A4 - X, >0, %20 : (54)
b

S tr(XaAs) + D tr(YBy) > 1
Z Gap 2> 1By a b
a

Note that in the primal, the noise POVM:s do not appear, because we can explicitly solve for these variables,
which gives rise to matrix inequalities instead of equalities for the marginals. These looser constraints give us
additional freedom and allow us to employ operator inequalities. Note also that the constraint 1 < 1is not
enforced as it follows from summing up one of the marginal constraints. The constraints in the primal in
equation (54) are looser than in the primal in equation (45), because the noise set is larger for all measurement
pairs. In turn, the feasible set of the dual problem shrinks, as the dual constraints X, > 0and Y}, > 0 are tighter
than X, + Y, > 0.

In analogy with 7P and /™, the measure 78 also satisfies the properties we introduced in section 2, namely
monotonicity under pre- and post-processings, and convexity of the inverse.

3.5.2. Example
The value of this measure for the running example is even higher than for the previous measures, specifically

V2 41
V2 + cosf + sinf
This value is plotted in figure 4 together with the other measures. A feasible point for the primal in equation (54) reads

ng = (55)

rllfrrz (1_r)Jlf(rxﬁ
G= 2 . where 7= L= S0+ (V2 + Do (56)
(1—r)ﬂ+ax rJlJrUz V2 (N2 + cos + sinf)
2 2|
and for the dual,
][,JZ_‘_UX_ |_ %%
X, Y)= 2 - V2 , \/75 , and N= V241 -
4(J2 + cosb + sinf) 1+ Ao 4 &% 2(V2 + cosb + sinf)
7 7
(57)

3.5.3. Lower bound
Forapair (A, B) of rank-one measurements in dimension d, let us introduce a feasible point for the primal in
equation (54) with G of the form (16), where

@) 1 (uB, B o d
(ﬂa)_ m(trAa), Yo =10, and 6 = 5 (58)

so that we obtain the bound
1 1 .
n= E 1+ _\/E < nA,B' (59)

A proof of feasibility of this specific point is given below. For more details, see appendix C.5 which also contains a
measurement-dependent refinement. As 78 is monotonic under post-processings, this bound on pairs of rank-
one measurements extends to all pairs of measurements in dimension d.
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The novelty in equation (58), as compared to the parent POVMs used for the other measures, is the fact that §
is non-zero. What enables us to introduce this term is the extra freedom in the primal in equation (54), namely,
the inequalities in the marginal constraints instead of equalities, which allows us to analyse the marginals for
non-zero 6.

For the proof of feasibility, we write the parent POVM defined by the coefficients in equation (58) as

1 1 1 1 1
b = ————=[tr(Bp)Aq + tr(A) By + 2Vd {Ag, By} + d(A;ByA; + B A.BY). (60)
4(d + Vd)
Since A, and By are rank-one, we can write A, = tr(A,)P, and B, = tr(B,) Q, for some B, = |¢,) (| and
Qp = |¥p) (1p|- Therefore, we can rewrite (60) as
tr(A,)tr(B " "
= Hm + VARQY B+ VARQ) + Qo+ VAQRY (Qy + VAQEN 20, (61)

which shows that Gis a valid POVM.
Next we should compute its marginals. The first one reads

1 1 1
G = ————|dA, + tr(A)1 + 4JdA, + d|A, + > B AB7 ||, (62)
; ’ 4(d+JE)[ ( ; ! "]]

where the terms are ordered as in equation (60) for clarity. Moreover, we have that for every |£),

d (457 BFALBLIE) = 3 tr(By) S tr(By)tr(A ) (€lubn) (lian) (gl hn) (1el€)
b b b
=tr(Aa)> | INtrBe) Y INtrBy) (€lvhw) (il )
1’4 b

2

2> tr(Ag) = tr(Au)|<£|90a> |2 = <§|Au|§>) (63)

> tr(By) (€l (Wl )
b

where we used the Cauchy-Schwarz inequality. Therefore, 5", B} 24, Bé/ 2 > A,, which together with
tr(A,)1 > A, enables us to lower bound the marginal (62), namely,

2d 4+ 24d + 1) 1 1
G > 20T NG T Dy — 2|14+ — |a. 64
Zbl "7 ad+ V) 2( JZ] 9

By symmetry of equation (60) the same conclusion holds for the second marginal, which shows that the point
defined in equations (58) and (59) is indeed feasible.

3.5.4. Upper bound
Consider the following feasible point for the dual given in equation (54):

Xo=2a y=B g n=2 1 (65)
fd fd f d
where fand A are defined in equation (18). This immediately implies that
A
RS 7 (66)

3.6. Relations between the measures
Certain inclusions between the noise sets defined in equations (22), (31), (39), (44), and (53), imply an ordering
of the measures. More specifically, from

(NG5 U Nip) © N, CNI CNG (67)
we conclude that
max{nj’B, 77;,3} < 77%,3 < 771?,13 < n,g«a,B (68)

for every pair (A, B).Itturns out that 74 and 7" are incomparable (see appendix A for an example). A more detailed
analysis allows us to prove that some of the inequalities given in equation (68) are in fact strict. Specifically, in

appendix B we derive improved relations between 19 and 7™, ¢ and 18, and n" and 18, which imply that for a pair of
incompatible measurements (A, B) the separations between these measures are strict, i.e. 771, 5 < HTB’ ni, 5 < ngA’ »
and 7, 5 < 1% 5. Moreover, the examples given in section 3.7 show that in some cases 19 coincides with 7P, as well as
n* with 7P and /™ with 178. The question whether the separation between 1P and 7™ is strict or not is left open.
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3.7. Mutually unbiased bases

We have mentioned earlier that MUBs constitute a standard example of a pair of incompatible measurements on
ad-dimensional system. Indeed, they might seem like natural candidates for the most incompatible pair of
measurements in dimension d. In this section we show that for a pair of MUBs all the previously introduced
measures can be computed analytically. The specific values we obtain will be compared against the findings of
section 4, in which we look for the most incompatible pairs of measurements.

For a pair (AMUB, BMUB) of projective measurements onto two MUBs in dimension d (see section 2.1), we
will use 77%;,,(d) as a shorthand for n:hm, pvus- Note that although in higher dimensions not all pairs of MUBs
are unitarily equivalent, they nevertheless give the same value for all the measures studied in this work. Hence,
for these measures the quantity UTAUB(d) turns out to be well-defined.

Indimension d = 2 a pair of MUB measurements is a special case of the example introduced in section 2.6,
corresponding to § = /4. Therefore equations (24), (46), and (55) imply that

ni/IUB 2= 77rMUB(2) = 77K4UB(2) = %) nJ)\I;KIIUB 2= 2(\/E — 1), and W%AUB 2= %(1 + %) (69)
For a pair of projective measurements onto two MUBs in dimension d > 3, the parameters given in
equations (18)and (19) equal f =2, A = 1 4 1/Vd, g4 = g" = g? = 2/d,and g/™ = 0.1t turns out that for
MUBs the upper bounds given in equations (30), (52), and (66) are actually tight. Therefore, the only missing
component is a feasible point for the primal.
For ¢ and 7" our feasible solution consists of

1 1
=-[1+ —— 70
! 2( JE+1) 70
and
G :;({A By} + ——A +LB) 1)
ab 2(\/2+1) a» Db \/Eu \/Eb.

This parent POVM, inspired by [39], section IV, is of the form of equation (16). The positivity of these operators
can be confirmed using the techniques presented in appendix C and let us stress that the proof crucially relies on
the fact that the bases are mutually unbiased. For 1P we must explicitly include the weights and we choose them
tobe uniform p, = g, = 1/d forall a, b. This assignment saturates the upper bound given in equation (30),
which implies that

r 1 1
ni/[UB(d) = UMUB(d) = n&UB(d) = E(l + m) (72)

For 18 we use the same parent POVM, but the more flexible form of noise allows for higher visibility:

1 1
=1+ —=| 73
U] 2(+_d) (73)

For 7)™ we must supplement our solution with a sub-normalised parent POVM of the noise pair

oo 1- n;‘;w(d)[
T dd -

which has already been used in [49], and is of the form of equation (16). This construction is only valid for

d > 3,because for d = 2 the corresponding noise pair {(1 — A,)/(d — 1)},and {(1 — By)/(d — 1)} isnot
jointly measurable (see equation (47) for a family of optimal feasible points for the primal). In both cases the
visibility given in equation (73) saturates the upper bounds (55) and (46), respectively, which implies that for all
d > 3,wehave

1+ (A B - A, - Bb)], (74)

n;\‘;I]UB(d) = 7)%/1[)3((1) = %(1 + %) (75)

Note that the value 7§, (d) was already derived in [21]. Also notice that equation (75) together with
equation (59) implies that MUBs are among the most incompatible measurement pairs with respect to 78 in
every dimension.

3.8. Summary
In table 1 we give a compact summary of the results for the differents robustness-based measures of
incompatibility: definition of the noise sets, properties introduced in section 2.3, lower and upper bounds, and
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Figure 4. The value of all the different measures (see table 1) for a pair of rank-one projective measurements on a qubit such that the
angle between the Bloch vectors of these measurements equals 26; see equation (20). Note that the rightmost point where § = 7/4
corresponds to qubit MUBSs, which demonstrates the fact that MUBs are the most incompatible rank-one projective qubit
measurements under all these measures. From bottom to top, the curves are 79 = 7" = 7P from equation (24), then 7/™ from
equation (46), and finally 78 from equation (55). Although 74, ", and 7P coincide in this case, this is not the case in general.

Table 1. Summary of the results on the depolarising, random, probabilistic, jointly measurable, and general incompatibility robustness of
pairs of POVMs. Recall that d is the dimension, while 1, and 1, are the outcome numbers. ‘Post” and ‘Pre’ stand for post-processing and pre-
processing monotonicity, respectively, see section 2.3. ‘Cvx’ stands for the convexity of the inverse of the measure, see section 2.3. For a pair
of rank-one projective measurements (A, B), the quantities appearing in the upper bounds are f = 2, A = max, ,{max Sp(A, + By)},

g™ = min,,{min Sp(A, + By)},and g¢ = g" = gP = 2/d; see equations (18) and (19) for definitions.

Form of the noise Post | Pre | Cvx Lower bound MUB value Upper bound
R R I e R e =
0 {({%}a’{%}b)} no | yes | yes % (l+ﬁ) % <1+ﬁ) ;:Z:
n° { ({Pﬂ ]l}a’ {‘1" Il}b) } yes max{n®, 7'} ; : g:
n® POVM*"5 yes % (l + Ld) %

value for a specific example of two projective measurements onto MUBs (see section 3.7). In figure 4 we plot the
values of 77: achieved by a pair of rank-one projective measurements acting on a qubit.

4.Most incompatible pairs of measurements

In this section, we address the question of the most incompatible measurement pairs in dimension d, for all the
measures introduced in section 3. This question has already been raised and partially answered in previous
works: in infinite dimension for 7P in [29] and numerically for 74 and 7% in [33]. Perhaps surprisingly, we find
that the answer depends on which incompatibility measure we consider. We have already seen that projective
measurements onto a pair of MUBs are among the most incompatible pairs under 78 in every dimension. On the
other hand, for the measures 74 and 1P we give explicit constructions of pairs which are more incompatible than
MUB:s for any dimension d > 3. For /™, our study is inconclusive, and we do not find measurements that are
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more incompatible than MUBs in any dimension. First we discuss the special case of 7", then we solve the qubit
case for all the measures, and finally we discuss higher dimensions.

4.1. Incompatibility random robustness

Recall that in order to find the most incompatible measurement pair in dimension d regardless of the outcome
numbers, it is enough to consider rank-one POVMs if the measure in consideration is monotonic under post-
processings. As we see from table 1, this is not the case for 1", which, at first glance, makes this problem hard to
tackle. However, what turns out is that for this measure the answer is trivial. Consider a pair of measurements
(A, B) and increase artificially the number of outcomes by adding zero POVM elements to both measurements.
Let us add these elements one-by-one, and denote the POVM pair at step i by (A’, B?). In appendix C.2.2 we
showthatif A < 2and 2(A — 1) < f,wehave

2—-A

f—200—1’ 76

hmiaoo 77:4“3, <

where fand A are defined in equation (18). It is then clear that whenever f = 2and A < 2 (e.g. any pair of rank-
one projective measurements onto two bases that do not have any eigenvectors in common), this limit reaches %

As it coincides with the trivial lower bound mentioned in section 2.4, this shows that x*(d) = % ford > 2.In
the rest of this section, we will not discuss this measure anymore. However, recall that for pairs of rank-one
projective measurements 7" coincides with 774, and therefore some of the results later in this section also apply to
this measure.

4.2. Qubit case
In section 3.7 we have shown that for a pair of MUBs all the incompatibility measures can be computed
analytically. What is special in the case of d = 2 is that these values coincide with the universal lower bounds (see
table 1). This means that pairs of projective measurements onto MUBs are among the most incompatible pairs
under nd, 7P, 7™, and 18 in dimension d = 2. Formally, using the notation introduced in section 2.4, we have
that

1

@ = @ = % ™) =2(J2 — 1), and x¢(Q2) = %(1 + f). (77)

For 14, this was known for pairs of two-outcome POVM:s [36], appendix G.

It is important to point out that there exist other pairs of measurements reaching these minimal values: from
the upper bounds given in appendix E.3.2, it is clear that any rank-one POVM pair such that A, = |a) (a|and
the Bloch vectors of Blie in the xy-plane of the Bloch sphere gives rise to the same value as MUBs. As an example,
one might choose A, = |a) (a| and B as a trine measurement in the xy-plane.

In appendix E.4, we extend this result to triplets of qubit measurements. In this case, we show that triplets of
projective measurements onto MUBs are among the most incompatible measurements under 74, 7°, ™, and
18 in dimension d = 2.

Also note that the value of x4(2) (respectively its equivalent for three measurements) has interesting
consequences for Einstein—Podolsky—Rosen steering. This is because joint measurability is intimately linked to
this notion [6, 7], as the depolarising map in 4 can be equivalently applied to the state we wish to steer, due to its
self-duality. We refer to [36], appendix F for details on this connection and only mention here that our results
show that in a steering scenario with two (respectively three) measurements and an isotropic state of local
dimension two, POVM:s do not provide any advantage over projective measurements.

4.3. Higher dimensions

4.3.1. Dimension d = 3

In the previous section we have seen that in dimension d = 2 pairs of projective measurements onto two MUBs

are among the most incompatible pairs of measurements under 19, 7P, ™, and 8. Starting from dimension

d = 3, the picture changes dramatically. To show this, we plot the (numerical) value of these four measures for a

particular one-parameter path of rank-one projective measurements in dimension three, see figure 5. It is

evident from this plot that, contrary to the qubit case, MUBs do not achieve the lowest value of the

incompatibility robustness under 19 and 7P. Instead, the lowest value among rank-one projective

measurements is reached by other bases, which we have found through an extensive numerical search among

pairs of rank-one projective measurements, using a parametrisation of unitary matrices in dimension three [51].
In this section we only look at rank-one projective measurements. Due to the unitary invariance of all the

measures we assume without loss of generality that the first measurement corresponds to the computational

basis A, = |a) (al, so that we only need to specify the second measurement B.
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0.7+

(Adev7 Bdev) (Aql\IUB7 BqMUB) (AMUB’ BMUB)

Figure 5. The (numerical) value of the four measures along a one-parameter path of rank-one projective measurements in dimension
d = 3. The pair (A%, B%")is defined in equation (79), (AY™UB, BaMUB)in equation (78), and (AMUB, BMUB) at the beginning of this
section. Details about the specific path used can be found in appendix D. Importantly, on this path the pair (AMYB, BMUB) achieves the
minimum value with respect to 7% and 7™, but it is outperformed by (A%", Bd¥) with respect to 1P and by (AMUB, BaMUB) vyith
respect to 79.

For 14, the optimum is reached, among others, by

11,
V22
BMY = Ulp) (b|UF, where U= 1 N (78)
V22
0 0 1

Note that it is simply a pair of qubit MUBs on a two-dimensional subspace together with a trivial third outcome
on the orthogonal subspace. The incompatibility depolarising robustness of this pair, ngMUB (3) = 0.6602 (see
equation (80) below for an analytical value) outperforms substantially not only anUB(S) ~ 0.6830, but also the
minimal value 0.6794 found numerically in [33], table 4.

For 1P, the optimum is reached, among others, by

1
2 2 2
B = U|b) (b|UT, where U= L —— (79)
J2 2 2
o L L
V2 2

which gives 0= 0.6813, showing a slight deviation from 1% - (3) ~ 0.6830.
For n/™, the numerical search did not yield an improvement on the MUB value, and for 7% we already have
an analytical proof that MUBs are among the most incompatible pairs in every dimension.

4.3.2. Dimensiond > 4

For n4, the qubit MUB structure found in dimension d = 3 has several natural generalisations in higher
dimensions. The general idea is to divide the Hilbert space into orthogonal subspaces of various dimensions, and
define the measurements as either MUBs or trivial measurements on the different subspaces. Among these, we
found numerically that the most incompatible construction is to define a pair of qubit MUBs on a two-
dimensional subspace, while on the orthogonal subspace the remaining measurement operators turn out to be
irrelevant. For simplicity, we choose trivial measurements on the orthogonal subspace, thatis, A, = |a) (a|and
By, = |b) (bl for a, b > 3,while {A;, Ay} and {B,, B,} isa pair of MUBs on the qubit subspace. For this
construction, we get alower bound in equation (C13) and an upper bound in equation (C23), which give the
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Figure 6. Illustration of the improvement over MUBs for 179 and 7P when the dimension d ranges from 2 to 16. From top to bottom
are depicted the MUB value (equations (72) and (75)), the lowest value we found for 7P (that is, equation (80) for even dimensions and
numerical results based on an analytical construction described in the main text for odd dimensions), the lowest value we found for nd
(equation (80)), and the lower bound (28).

same value and therefore the incompatibility depolarising robustness of this pair is

ngMUB(d) = %(1 + %) < Wix{UB(d)' (80)

In figure 6 we plot the improvement over MUBs that this construction achieves. In particular, it is worth
stressing that, in contrast to a pair of MUBs, this construction exhibits the same asymptotic scaling as the lower
bound derived in section 3.1.3. More specifically, expanding the right-hand side of equation (28) gives

1 1
— 4+ — 4+ 0D, 81
>t 57 + 0™ (81)
whereas
¢ =1L L owe 82
onUB()_5+ﬁd+ ( )) ( )
wo@ =1y 14 owy (83)
MUB 2 2\/E :

The reason why this pair performs so well is the fact that the two measurements are highly incompatible on the
qubit subspace, while the noise is spread uniformly over the entire space. Note that an analogous structure has
been found while searching for the quantum state whose nonlocal statistics are the most robust to white noise
[52]. Supported by the optimisation in dimension d = 3 together with one billion random instances in
dimensions d = 4 and d = 5, and the asymptotic scalings, we conjecture that this pair is among the most
incompatible pairs of rank-one projective measurements under 7¢ for all dimensions. For general pairs of
measurements we leave the question open.

For nP, fixing MUBs on a qubit subspace no longer determines the incompatibility robustness any more, as
the noise can now be adjusted to have different weights on the different subspaces. In fact the construction that
uses trivial measurements on the orthogonal subspace does not surpass the d-dimensional MUB value any more.
However, employing some other rank-one projective measurements on the orthogonal subspace gives rise to
measurements that outperform MUBs. In even dimensions, by decomposing the space into many qubit
subspaces and by having MUBs on each of them, we can reach again the value of equation (80). For instance in
dimension d = 4 this means
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1 1

— — 0 0

V2 2

1 1

— —— 0 o0

B, = U|b) (b|UT, where U= 2oz . 1 (84)

0 0 —= —
V2o 2
1 1

0 0 — ——
V2 V2

The parent POVM is then the same as for 19 whereas the construction of the dual variables is explained in
appendix C.1.2. Our conjecture on 79 then translates straightforwardly to 7P in even dimensions as n¢ < 7P. In
odd dimensions, this construction is not applicable. We conjecture that in dimension d = 3 the pair defined in
equation (79) is among the most incompatible pairs of projective measurements under 7P. In higher odd
dimensions, taking this pair on a qutrit subspace together with MUBs on all remaining qubit subspaces always
outperforms MUBs (see figure 6). As there might be some more involved construction giving a lower value, we
leave the question of the lowest value of 7P open for odd dimensions higher than d = 5. Note nonetheless that
with one billion random pairs of rank-one measurements in dimension d = 5 we were not able to surpass it.

For nJ™, encouraged by the optimisation in dimension d = 3 and the one billion random sampling in
dimensions d = 4 and d = 5, we conjecture that pairs of MUBs in any dimension cannot be outperformed by
any pair of rank-one projective measurements.

Regarding 78, the incompatibility generalised robustness of a pair of MUBs is precisely the universal lower
bound that we derived in equation (59). This means that MUBs are among the most incompatible pairs among
all pairs of measurements in dimension d, regardless of the number of outcomes. Formally, using the notation
introduced in section 2.4, this means that

1 1
sd)=—|1+ —|. 85
X&(d) 2(+JE) (85)

5. Conclusions

In this work we develop a unified framework to study various robustness-based measures of incompatibility of
quantum measurements. We find that some of the widely used measures do not satisfy some natural properties,
which means that one should be cautious when dealing with them. In particular, they are not suitable for
constructing a resource theory of incompatibility. Moreover, we find that the most incompatible measurement
pair depends on the exact measure that we use, even when all the addressed natural properties are satisfied. We
are able to show that for one of the measures a pair of rank-one projective measurements onto mutually unbased
bases is among the most incompatible pairs, but also that this is not the case for some other measures. Our work
shows that the different measures exhibit genuinely different properties and we conclude that despite a
substantial effort dedicated to the topic, our understanding is still rather limited.

One natural future direction arising from our work would be to obtain a complete characterisation of the
most incompatible measurement pairs in all scenarios for all the measures. We expect, however, that this might
be rather difficult, so one might start by restricting the task to natural scenarios, e.g. d = ny = ng or even just
searching over rank-one projective measurements.

Many results in this paper can be straightforwardly extended to the case of more than two measurements.
We refer to appendix E for the SDP formulations of the various measures, the upper bounds and a few lower
bounds. This could serve as a good starting point for future research.

Alast promising research direction arising from our work concerns the possibility of constructing a resource
theory of incompatibility. Are some of the existing measures suitable as resource monotones? Are there some
additional conditions that one should require? What is the most general class of operations that preserves joint
measurability? Answering these questions will help us to understand how to quantify and classify
incompatibility in a meaningful and operational manner.
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Appendix A. Counterexamples

In this appendix, we prove some claims made in the main text through explicit examples. Note that some of the
values in this section are obtained via numerics, but as these values are solutions of SDPs, they are exact up to
machine precision.

Counterexample 1. The measure 79 is not monotonic under pre-processings.
Note that an incorrect proof of this statement appeared in [12], proposition 2. The issue with the argument is

that it implicitly assumes pre-processings to be trace-preserving. The following counterexample exploits this
loophole. Consider a pair of qubit MUBs measurements:

11
_(10 _ (00 |2 2 2 2
a=(y o) 4=(09) m=|T T} 2=l (A1
2 2 2 2

For these the value 17‘1, =1 / V2 is well-known. See for example [39], section III A or the example in the main

text (section 3.1.2). Let us create new qutrit measurements AN and B2 by pre-processing, specifically, by
applying the map A() = Ki()K]' + KZ(.)KZT, where

10 00 b ab 0
Ki=]0 1| and K, =|0 0] so that A[(u d)] =|cd ol (A2)
00 01 ¢ 00d
Crucially, trd; = 1 = 2 = trA{ and similarly for B. From the following feasible point for the dual in (23):
2 0 0 27 00
4 10
Xl = 0 z 0 5 X2 == 0 i 0 N
20 4
0 0 z 0 0 i
4 4
2439 — 99 1 0 2439 — 99 1 o
40 4 40 4
Y = 1 4/39 — 63 o ln= 1 44/39 — 63 0 (A3)
4 60 4 60
0 0 72 0 0 72
4 4
we get the bound
d 14V39 =3 1 4
Wi < o 07036 < 07071 ~ —= =1 (Ad)
Counterexample 2. The measure 1,/74 is not convex.
Consider the following pairs (A°, B®) and (A!, B') of qubit measurements
11 1 1
Lo 09 22 2 2
AL = 1|, a9= 1|, BY= BY = , Al=1, A;=0, B'=B" (A5
0 — 0 — 11 1
2 2 - = - -
2 2 2 2

In [53], jointly measurable pairs of two-outcome qubit measurements are fully characterised. From this, we can

compute
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54+ 5 [25 + V13
nj&“,B“: T, 77%2)32: 1, and 7]‘,{0;141)@: T; (A6)

from which the convexity of 1,/n¢ isimmediately negated as

d

1l 1 1 1
|+ ~ 1.0878 < 1.0902 ~ ——. (A7)
2\ Mg Tap

a0l 50451
2 2
Note that the non-concavity of 4 follows from the non-convexity of 1 /774

Counterexample 3. The measure 7" is not monotonic under post-processings.

Consider a pair (A, B) of qubit MUBs measurements, as given in equation (A1). Let us create a new three-
outcome measurement A by the post-processing

B = BRI = % BGIY) = BAP) = BQI) = 0,

and A(3|1) =1 so that A = AZ‘B = % and Af = A,. (A8)

The incompatibility random robustness of A® and Bis lower than 1/+/2, which can be seen by the feasible point
for the dual in (32)

3 27
- 0 — 0
X = X = 4 27)X3: 20 o
0 — 0 -
10 4 (A9)
9
439 — 63 _1 4./39 — 63 l
60 4 60 4
Y = Y = >
1 24/39 — 99 1 24/39 — 99
4 40 4 40
which gives rise to
1439 — 3 1
N, < ————— ~0.7036 < 0.7071 = — =17, ... Al0
1A% B S 120 \/E 14,8 ( )

Counterexample 4. The measures 19 and 7" are incomparable.

Using [53] and the pair of measurements (A°, B%) defined in equation (A5), one gets

N0 = 4/# ~ 0.8507 < 0.8660 ~ g = 1 5o (Al1)

To get the other direction, we consider a pair of two-outcome measurements in dimension d = 3, namely,

L1011 3 11
oo 000 32 8 8 32 8 8
1 3 1 1 1 1

Al=lo o o] Af=|0o1 0| B’=|- = ——=| Bi=|-—- - =) (A12)
00 0 00 1 8 4 8 8 4 8
113 1 11
8 8 4 8 8 4

which gives 177, 1, & 0.8799 < 0.8816 & 7/, .

Counterexample 5. None of the measures defined in the main text is concave.

Consider the following pairs (A°, B®) and (A!, B') of qubit measurements

11 1
20 20 20 20 i ;
Ad=la)(a, BY= Ty BY = ¢ Ay = Uhla)(a|lU}, B = Uslb) (b|U, (A13)
20 20 20 20
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where

19 1 \/T\/T
20 |4 Uy — 5 5

g -l )

With this example, the concavity of all five measures studied in the main text is negated, that is,

(A14)

\.D

% *
« nA",B" + 77A1‘Bl
0 al 5045t - 5
2 2 2

(A15)

as one can confirm by solving the respective SDPs up to machine precision.

Appendix B. Relations between the measures

In the main text we observed that inclusions between the different noise sets immediately imply certain
inequalities between the measures. More specifically, equation (68) states that

ax{"i,B’ M) Sy < 77);,13 < s (B1)

In this appendix we show that these relations can be strengthened, which leads to strict separations between
some of the measures.

In order to tighten the inequality between 74 and 7™, we take the optimal point for the primal for ¢ in
equation (23), and construct from it a feasible point for the primal for 7)™ in equation (45). Specifically, for a pair
of measurements (A, B) we subtract some fraction of the original POVM element from the noise reaching the
optimum in the primal for ¢ in equation (23), such that the remaining noise is jointly measurable and can thus
serve as a feasible point for the primal for 7)™ in equation (45):

d d
1 1= 1= tr(A,)l — €A
Wi,BAa + 1 - ﬁi,s)trAaE = [ni,B + — A'Be]Aa + [1 - 7]13 - 7 A'BE] 1 “d)i E{ 2 (B2

and similarly for B,. The challenge now is to determine the largest value of € for which the noise pair

({ tr(A.)l — €A, } ’ {tr(B;,)]l — €B, } ) (B3)
d— e a d—e b

is jointly measurable. This can be done by finding rank-one POVMs which can be post-processed to give A and
B, respectively. Let { R, }, be a rank-one POVM which under post-processing O gives {A, }, and similarly let { S}
give { By}, under (5. The parent POVM given in equation (49) implies that the noise pair

{tr(R,)Jl — ¢R, } ) {tr(SS)]l — €S, } -
d— € , d— € s
is jointly measurable for
R (B5)

d+ Jd*>+4d — 4
Now notethat A, = >_, Br(a|r)R, implies
tr(R)I — R, _ tr(A)l — €A,
Zﬁm)r() R _ H@JL - edy

d—e€
Clearly, if we apply the post-processings (O and (35 to the noise pair given in equation (B4), we will obtain the
noise pair given in equation (B3) for the same value of €. Since post-processings preserve joint measurability we
deduce that

(B6)

i 21 nA )
s A+ Ji+ad—4

In order to tighten the inequality (B1) between 19 and 78, we take the optimal point for the primal for 74 in
equation (23), and construct from it a feasible point for the primal for 78 in equation (54). Specifically, we use
tr(A,)1 > A, and tr(By)1 > B, to obtain

< (B7)
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d
1 -7
1% 5Aa + (1 — nj’B)trAuE > [ni,B + TA'B]A“ (B8)
and a similar relation for B,. These together imply that
1- nd
Mo+ — <0 (B9)

In order to tighten the inequality (B1) between 7" and 78, we take the optimal point for the primal for 1" in
equation (32), and construct from it a feasible point for the primal for 78 in equation (54). Specifically, we use
1> A,and 1 > B, toobtain

L\ T l S P 1 - 7111—4,3 A
Na,pa +( UA,B) Z | Ma,B + a (B10)
g 14

and a similar relation for B, These together imply that

Map + <78 (B11)

Note that all the above improved relations are saturated by pairs of MUBs in dimension two, see section 3.7.

Appendix C. Bounds on the different measures

In this appendix we provide details about various bounds that we introduce in the main text, namely
equations (28), (30), (50), and (59). Moreover, we provide measurement-dependent refinements of the lower
bounds and we generalise the upper bound on 14, 1, and 7P for certain classes of measurements with some
specific structures.

We will use the ansatz defined in equation (16), but only for the case of rank-one measurements A and B.
Note that in this case A‘}/ZB;JA;/Z = tr(A;Bp)A, /trA, o< A,, and similarly, Bbl/zAaBbl/2 o Bj. Therefore, we
can write equation (16) as

Gap X {Am Bb} + (GapAq + 541th) + 'YabJL (CDH

where the proportionality constant is fixed by the normalisation, and we introduced the new parameters &,;, and
Bap that now depend on both indices. Clearly, the operator is non-trivial only on the subspace spanned by the
eigenvectors of A, and By, which allows us to compute its spectrum. The eigenvalues of (C1) are then

1. . - - - =
E(O‘abtrAa + ﬁubter + Ztr(Ang) + \/(aubtrAa - 5abter)2 + 4tr(Ath)(04ab + tl‘Bb)(ﬁub + trAu)) + Yab»

(C2)
together with ~,, when d > 3.
C.1. Incompatibility depolarising robustness
C.1.1. Lower bound. Forapair (A, B) of rank-one measurements, an ansatz of the form (C1) that is easy to
analyse is defined by &,y = xtrBy, Bap = xtrA,, and v, = ytrA,trBy, so that
1
Gy = ————  —({A,, By} + x(A trBy, + BytrA,) + ytrA, trB,l). C3
ab 2(1 T dx) T dz}/({ a b} ( a b b u) y a b ) ( )
Clearlyifeither A, = 0 or B, = 0, we have G, = 0, so in the following we restrict ourselves to the case
trA,trB, > 0. From equation (C2) we deduce that in order to have G,;, > 0, we should have
A,B
y>0 and x+ ¢+ (1 + x)cyp +y >0, where ¢, = M (C4)
trA, trBy
For x > —1the second constraint is tighter with the minus sign which gives
y 2 —x(1 — cap) + cap(l — cap)- (C5)

For a fixed c,, this defines a half-plane in the (x, y) plane. Taking the intersection of all the half-planes
corresponding to ¢, € [0, 1]yields the region of (x, y) for x > —1which is allowed for all possible
measurements. To explicitly characterise the region we maximise the right-hand side of equation (C5) over

cap € [0, 1] for every fixed value of x > — 1. Since the expression is a quadratic function of ¢, the maximum is
achievedat ¢, = (1 + x) /2 ifthis valuelies in the range [0, 1] or at one of the endpoints ¢, = 0, ¢ = 1. A
straightforward case-by-case analysis yields the allowed region for x > —1.
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Figure C1. Illustration of the measurement-dependent refinement of the lower bound on 79. The upper curve is the boundary of the
allowed region defined in equation (C7), while the three lines are the boundaries of half-planes defined in equation (C5) for three
different overlaps ¢4 < ¢4 < ¢4 Note that the arrows indicate the gradient of the objective function defined in equation (C8) along
the different curves. In particular, the objective function is constant on the dashed line corresponding to ¢ The black circle
corresponds to the point given in equation (C9) while the black cross to the one given in equation (C11). In this figure we have used
d=3andc{ = ¢, + 0.08.

crit

For x < —1 the tighter constraint reads
y 2z —=x(1 4 cap) = cap(1 + can) (Co)
and the same procedure leads to the allowed region for x < —1. Combining the two results gives the overall
allowed region:
—2(1 +x) ifx< -3

Ry
P ) R ! (C7)

0 if 1 <x
over which we want to maximise the objective function of the primal in equation (23), that s,
2+ dx
n= 2t c8)
2(1 + dx) + d%

Since the right-hand side increases as y decreases, the maximum is reached on the boundary of the allowed
region. Then we can plug y with equality in equation (C7) into the function (C8) and differentiate the resulting
single variable function with respect to x to obtain the following optimal assignment:

2+ Jd*+4d — 4 d+2—\/d2+4d—42
x = y and y = ] s (C9)

which corresponds to the feasible point presented in equation (28) of the main text. It is easy to check that this
choice of xand y saturates equation (C5) for a particular value of ¢, which we refer to as the critical overlap

A d—2+Jd*+4d — 4 oL
crit 2 d = \/E .
Note that this coincides with the MUB overlap only in dimension d = 2.

There is an easy way to refine this bound in a measurement-dependent way: instead of requiring that
equation (C5) holds for all values c,;, € [0, 1], we only require that it holds for the values that appear for the
specific pair of rank-one measurements we consider. Imposing fewer constraints means that we are optimising
over alarger region, so we might hope to reach a higher value of the objective function.

If we only care about a finite number of overlaps c,;, the lower boundary of the relevant region is piecewise
linear (see figure C1). If one of the overlaps equals the critical one, the bound cannot be improved, so in the
following we assume that none of the overlaps equals the critical one. It turns out that to determine the optimal
assignment of x and y we only need to know the value of the largest overlap that is smaller than the critical one,
which we denote by ¢ ¢, and whether there are any overlaps larger than the critical one. If there are overlaps larger

(C10)
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than the critical one, let us denote the smallest of these by ¢} ! and then the optimal point is reached at the
intersection of the two lines defined by ¢ ¢ and c¢ in equation (C5), which gives

x=cd+cd—1 and y=(1 - cHa - ¥, (C11)
so that the measurement-dependent refinement of equation (28) reads
ow (A +cd—nd+2

as = Mop = - . (C12)

242+ - Dd+ (1 - H - hHa?

What is particularly interesting about this bound is that whenever ¢4 tends to 0 and cd tends to 1, the bound
tends to 1, 1.e. these conditions are strong enough to ensure that the measurements are almost compatible. This
is clearly the case for for identical measurements, that is, for A = B, for which the bound equals 1.

If none of the overlaps is greater than the critical one, the optimal assignment is given by x = c4and y = 0
and the resulting value corresponds to setting ¢ = 11in the right-hand side of equation (C12).

As an example we can compute the lower bound for the embedding of qubit MUBs into higher dimensions
introduced in section 4.3. In this example, ¢4 = 1/4/2 and ¢ = 150 that we get

1 V2
ﬁgMUB(d) > 5(1 + m),

which turns out to be the correct value, see equation (C23) for a matching upper bound.

(C13)

C.1.2. Upper bound for embeddings in higher dimensions. Here we investigate how the upper bound on 74 is
affected by the following procedure, which we refer to as embedding. Consider a pair (A, B) of rank-one
projective measurements in dimension d; and create a new pair (A, B) in dimension dy > d; as follows:

(Aﬂ 8) ifl<a<d (Bb O) if1<b<d

A, = 0 and B, = 00 s (C14)
O 0 ) ifgri1<a<d O 0 ) g +1<p<d
0 Ma—d, 1 i Kasx f 0 Nb—d, 1 i + &S X df

where (M, N) is a pair of rank-one projective measurements actingon a (dy — d;)-dimensional space.

We derive an upper bound on ni’ 5 Which depends only on the quantity A (defined in equation (18) of the
main text) computed for the measurement pair (A, B) and the dimensions d;and dr Aslongas A < 2thebound
decreases as dyincreases and in the limit d — oo it converges to % This can be explained by observing that as dy
increases the noise gets spread out over the entire space and its weight on the subspace relevant for the
measurements (A, B) decreases. Note that the bound shows no dependence on the second pair of measurements
(M, N).

Let us introduce the following ansatz for the dual in equation (23):

Xa:(o‘ﬂ_BA“ 0) if1<a<d Yb:(““‘@b 0) if1<b<d
o 0 and o0 . (1)
xa:(WO“ 8) ifd+1<a<d 1@:(70Jl 8) ifd+1<b<ds

The scalar constraint of the dual in equation (23) reads

d; R R d; R N
1+ > (atrd, — Bud) + S (atrB, — BuB))>
a=1 b=1

4 i 0 el 4 (C16)
Z adi — fude a4 5o 2 tM+Z [trst-i-Z ey,
a=1 dy a=di1 9y dy b=di+1 4f
which can be further simplified using the rank-one projective assumption to
d; d;
1+ 2ad;|1 — =] > 284; 1—— + 27di| 1 — =) (C17)
ds ds ds
It is easy to see that the constraints
720, a+v2>20, and 2a = BA (C18)

ensure that X, 4+ ¥, > 0. More specifically, the first one is required to ensure positivity when both indices are
between d; + 1and dj the second one when one of the indices is between 1 and d;and the other between d; + 1
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Table C1. Values obtained for 19 using the embedding procedure described in appendix C.1.2. Specifically, the values correspond to the
embedding of a complete set of MUBs in dimension d; into dimension dy. For example, the value 4/10 in the last column comes from the
embedding of 5 MUBs from dimension d; = 4 to dimension dy = 6. Although we present numerical values all values are analytical. Note
also that the upper bound obtained via the construction explained in appendix C.1.2 only gives an upper bound on 4. In all cases shown in
this table, this bound is tight as there exists a parent POVM reaching exactly the same value. Such a parent is not given in this paper. As they
provide upper bounds on the lowest value achievable by 19, they can be compared to table 4in [33].

d s 2 3 4 5 6
2 0.5774 | 0.5273 | 0.4975 | 0.4778 | 0.4605
3 0.4818 | 0.4514 | 0.4314 | 0.4114
4 0.4309 | 0.4128 | 0.4
5 0.6863 | 0.3620

and dg and the last one when both indices are between 1 and d;. Requiring that the last two inequalities given in
equation (C18) are saturated implies

a= iﬁ, and v = (1 - i),@ (C19)
2 2
Plugging these back into equation (C16) and requiring that the inequality is saturated allows us to deduce that
Looohi-loa-pfi-4)| (C20)
Bd; dy dy
To see that this corresponds to a non-negative value of S note that A < 2 implies that
21717@71)17é 2217i717i =M>o. (C21)
dy dy d d dr

We immediately see that v > 0, which means that the assignment given above is a feasible point for the dual
given in equation (23). The resulting upper bound reads

2 di
)\7@,2(,\71)(17’;) _11+ AN—Dd;—1
Q= Nd; + A= Ddi — 1]

My < = (C22)

oot o]

Itis immediate that whenever d; = dy we recover exactly the upper bound given in equation (30).

As an example we can compute the upper bound for the embedding of qubit MUBs into higher dimensions

introduced in section 4.3. For this example, d; = 2, dp =d, f=2and =1+ 1/+/2 sothatwe get
=

d+2)

which turns out to be the correct value, see equation (C13) for a matching lower bound.

Note that this procedure can also be applied to sets of more than two measurements. Although we do not go
into the details in this case, table C1 contains the values obtained by embedding a complete set of MUBs in higher
dimensions by adding rank-one projective measurements onto the computational basis of the remaining
(df — d;)-dimensional space, e.g. M, = |a) (a| in equation (C14).

1
s (@) < 5(1 + (C23)

C.2. Incompatibility random robustness

C.2.1. Lower bound. For a pair of rank-one measurements, it is possible to refine the ansatz defined in
equation (34) by tuning the relative weight of the anticommutator, but this does not lead to any general bound
on 7" as this measure is not monotonic under post-processings.

C.2.2. Upper bound with addition of zero outcomes. Here we show how to tighten the upper bound introduced
in section 3.2.4 in the presence of zero POVM elements, which we then use in section 4.1. We consider a pair

(A, B) of measurements that contain zero POVM elements. Without loss of generality we can assume that the
first POVM elements are non-zero. Then, for simplicity, we assume that 4y = 1z = 7, and that the number of
non-zero elements of A and B is the same and we denote it by #;. The other cases, namely, #, = 13 or the number
of non-zero elements of A and B being different, can be treated in a similar manner. Therefore we are left with
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two POVMs with the same number n70f outcomes such that

A, =0 ifl1 <a<n; By,=0 if1 <b<n;
. nd ] . (C24)
A =0 ifn;+1<a<<n By,=0 ifn; + 1 <b < ny
Then we introduce the following ansatz for the dual in equation (32):
Xo=oal - pA, ifl <a<n d Y, =al - 8B, ifl <b<n; s
X, =791 ifni+1<a<n Y, =1 ifﬂi+1<b<nf' (C25)

Note that the only difference from equation (37) is that the coefficient of the identity in the dual variable depends
on whether the outcome corresponds to a zero or non-zero POVM elements. The scalar constraint of the dual in
equation (32) reads

n; ni
1+ > (attA, — BtrAl) + > (atrB, — BtrBy)

a=1 b=1
. . (C26)
Y ad — BA oqd S ad — BB i oyd
>yhad = frAy s oad | shad - Buby o ho0d)
a=1 ng a=n;+1 ng b=1 ng b=n;+1 nyg
which can be further simplified by introducing f defined in equation (18) of the main text:
L4 20d|1 = 2 s ga| f— 2|+ 29a] 1 = 2. (C27)
nf nf nf
Assume that § > 0 and let A be the quantity defined in equation (18) of the main text computed for the
measurement pair (A, B). Itis easy to see that the constraints
720, a+vy=06 and 2a = B, (C28)

ensure that X, + Y, > 0. The first one is required to ensure positivity when both indices are between n; + 1
and 1 the second one when one is between 1 and #;and the other between n; + 1and 15 and the last one when
both are between 1 and ;.

Requiring that the last two inequalities given in equation (C28) are saturated implies

o= iﬁ, and v = (1 — i)ﬂ (C29)
2 2
Plugging these back into equation (C27) and requiring that the inequality is saturated allows us to deduce that
L2 ool B (C30)
pd ny ng

Itis easy to check that f > 2(\ — 1) (whichis only possible if A < 2) guarantees that this assignment leads to
strictly positive 3. Then, this constitutes a feasible point for the dual given in equation (32) and we obtain

Itis easy to check thatif f = 2, the right-hand side tends to % as ny — oo.

5 < (©31)

C.3. Incompatibility probabilistic robustness

C.3.1. Lower bound.  For this measure, a natural idea would be to mix the terms tr(B,)A, + tr(A,) B, used for
nd with the terms \/ns /ng A, + /13/n4 By used for *. Unfortunately, our efforts in this direction did not lead
to any universal lower bound. Nevertheless, this procedure can be used for any fixed pair of measurements to
obtain improved lower bounds.

C.3.2. Upperbound. Inthe main text, we mention in section 4.3.2 that the value of 4 given by the qubit MUBs
construction is also reachable by 7P when the dimension is even. Here we show this fact by adapting the
procedure explained in section C.1.2 to the measure 7P.

Recall that we consider pairs of rank-one projective measurements (A, B) whose d; first outcomes live in the
first d; dimensions of the total d/-dimensional space, and whose d; — d; remaining outcomes live in the
remaining space. For this structure, an ansatz for the dual for ¢ given in equation (23) has been presented in
equation (C14). However, this ansatz does not satisfy the additional constraints present in the dual for 7P given
in equation (40), namely, trX, < ¢ and tr¥;, < v.
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Assume now that dy = md;, where m is a positive integer, and that the structure of the pair of rank-one
projective measurements (A, B) is the following

-

A, ... 0
: if 1 gagd;
0 ... 0
A, = : : (C32)
0 0
. : if m — Dd; + 1 < a < md;
0 ... Au_(m_na,

and similarly for By, with respect to By, where there are m blocks in the matrices we write and where A and B are
rank-one projective measurements acting on a d;-dimensional space. We can apply the procedure from

section C.1.2 to each d;-dimensional subspace of the total d-dimensional space to get a pair of dual variables
XD, YDy foreach! € {1, 2,...,m}. Then, if we define

m

1 & 1
Xo=—3 X"y, and Y= —37¥ 0, (C33)
mi—; mi—;

it clearly satisfies all constraints of the dual for 7P given in equation (40), including the trace constraint by
symmetry. This implies that for the specific block structure of equation (C32), the upper bound obtained in
equation (C22) for n4 remains valid for 7P.

As an example, consider the measurement pair defined in equation (84). For this instance, we have d; = 2
and d; = 4. The above procedure gives the same bound as for ¢, which is given in equation (C23) by
setting d = 4.

C.4. Incompatibility jointly measurable robustness

For this measure, we combine the results of section C.1.1 with the relation between 74 and 1/™ obtained in
equation (B7). Specifically, in the primal in equation (45), the parent POVM G,;, will be exactly the one we used
for nd in equation (27) of the main text, that is, equation (C3) with x and y given in equation (C9), while the
parent POVM H,,;, will be of the form given in (C1) with &, = —xtrBy, Ba = —xtrA,,and Yop = VrAgtrBy,
so that

1

= —————({A,, By} — x(A,trBy, + BytrA,) + ytrA,trByl). C34
2(1—dx)+d2y({ b} ( by + BptrAa) +y y1) (C34)

Hap

Note that such a choice gives rise to a valid parent POVM for the noise considered in equation (B3), namely,
(LAl — €Al /(d — )}a, {[r(By)] — €By1/(d — €)}y), where

dx — 2
€= .
dy — x

(C35)

Then we aim at maximising € under the constraint that the operators H,;, of equation (C34) are positive. Since
the only difference between equations (C34) and (C3) is the sign of the middle term, the allowed region
corresponds to the reflection about x = 0 of the allowed region given in equation (C7). An analysis very similar
to the one detailed in section C.1.1 can be done in order to show that the optimal point is reached for

24+ \Jd>+4d — 4 d+2+\/d2+4d742
x:f andy: 5

2d

(C36)

which corresponds to the feasible point presented in equation (50) of the main text. Note that, similarly to the
case of 9, these values of xand y correspond to a critical overlap:

im_ —d+2+d2+4d— 4 1
Corit = < —.
2d Jd

Note that this coincides with the MUB overlap only in dimension d = 2.

To obtain a measurement-dependent refinement of the universal bound given in equation (50), we follow
the approach described in section C.1.1, i.e. we maximise € over a larger region determined by the values of ¢,
present in the specific measurement pair we consider. In an analogous manner we introduce ¢/™ and ¢/™, where
the former is taken to be 0 if no overlap is smaller that the critical one. Finally we obtain the following
measurement-dependent bound:

(C37)
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1 — pdlow 1+ ™+ d™d -2
jm > d,low AB . cZ Cy C38
Mag Z Map T m |, _jm jm_jm 5’ (C38)
’ ’ d A+d"+ ™M@ -1 + "™
where ni‘,lgw was defined in equation (C12). Note that the optimisations of the two parent POVMs appearing in

the primal given in equation (45) were performed separately. A better bound could in principle be obtained by
optimising over both POVMs at the same time, but we leave this task open for future work.

C.5. Incompatibility generalised robustness
Forapair (A, B) of rank-one measurements, an ansatz of the form (C1) that is easy to analyse is defined by
Aap = (x + ycazb)ter, Bap = (x + ycazb)trAu, and ~y,, = 0, where

= | FAaBe) (C39)
trA, trBy

if trA,trB, > 0 and ¢;;, = 0 otherwise. Then
1

Gp=—"""T—"
2(1 +dx +y)

({Aa, By} + (x + yc2) (A By + BytrA,). (C40)

If trA,trB, = 0 we immediately see that G,;, = 0, so we only need to check positivity in the case trA,trB, > 0.
Under the assumption that x, y > 0 we deduce from equation (C2) that in order to have G, > 0, we should
have

x+yel + oyt &+ yel + Dea > 0. (C41)

As shown in section 3.5.3 of the main text the corresponding visibility reads

24 (14 3)@x + )
- . (C42)
21 + dx + y)

The goal is to maximise this 77in the positivity region of all G;.. Then a similar analysis to that of n¢ leads to the
maximumn = (1 + 1/ Jd) /2 achieved by the point x = 1/ (2y/d)and y = Jd /2 presented in
equation (58).

Asbefore to obtain a measurement-dependent refinement we define the critical overlap ¢%, = 1/ Jd (note
that this coincides with the MUB overlap in every dimension). If one of the overlaps equals ¢£; no improvement

can be obtained, so from now we assume all the overlaps to be different from c%,. Let ¢ 8 be the biggest overlap

smaller than ¢&; and c$ the smallest bigger than ¢£,,. The optimal point corresponds to

88
x = qu and y = ! (C43)
b+ ct c +c8
and gives the following measurement-dependent refinement:
8 4 (8 8.8
0> 2+ cBHd+ A + Ecgd)d + 1)~ (Cad)

2d(1 4 c® + cf + ctc8d)

Contrary to the measurement-dependent bounds on 14 and 7™, namely, equations (C12) and (C38), whenever
c8tendsto0and cf tends to 1, thisbound tends to (3d + 1) /(4d) = 1. Thisis due to the fact that the ansatz
given in equation (C40) does not contain the identity term, as including such a term makes the optimisation
procedure difficult. Therefore in some cases a better measurement-dependent lower bound on 78 is obtained by
plugging equation (C12) into (B9), which gives

T4+ o 4 dedd
242+ ¢ - Dd+ (1 - cHA - cHa?

nG 5 > (C45)

Appendix D. Details of the path used in figure 5

In figure 5 of the main text, we plot the value of the studied incompatibility measures on a continuous path.
Recall that we fix the first measurement to correspond to the computational basis, so the path is determined by
the second measurement and it leads from B*" through BV to BMVB, In this section we provide an explicit
description of this path.
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The trajectory from B to BMVE corresponds to the interval 6 € [r/4, m /2] for

1 sind cos 6
NN N
By(0) = U®)|b) (b|U(O)', where U®) =] 1 sinf  cos@ | (D1)
NN
0 —cosf sinf

Itis easy to check that § = 7 /4 corresponds to B defined in equation (79), while = /2 corresponds to
BMUB {efined in equation (78).
For the second part of the path, let us first explicitly state our choice of the basis B unbiased to A in dimension

d=3:
] 11
BME = Ulb) (b|U*, where U= —=|1 &% &% (D2)
\/g 2im 4im
1 3 €3
We now choose a particular unitary Vthat maps B¥V® to BMYP:
V2 343 V3 -
NEREN NG 62
v=| o \/3 -1 \/g +1 (D3)
22 22
1 =3 -3 -3+
NE) 6 6

To generate a continuous path we compute the principal matrix logarithm of V, i.e. we find a Hermitian matrix
H that satisfies V = el and whose spectrum is contained in (—, 7]. The path is given by elf BiMUBe—itH for
t € [0, 1], which clearly gives BMUBfort = 0and BB fort = 1.

Appendix E. Larger sets of measurements

In this appendix, we generalise some notions and techniques introduced in the main text to larger sets of
measurements. The notation of pairs used through the main text, namely, A, and By, was useful for clarity.
However, for more measurements we opt for another notation taken from nonlocality: A,|,, wherex =1 ... k
labels the measurement performedand a = 1 ... n,isits outcome. In the following, we will refer to the set of
measurements { {Ayx}a} x sSimply as { A, }, dropping the indices, and we will use >_, . as a shorthand for

Ziz >onx . Similarly to definition 1 in the main text, we say that a set of POVMs { A, } is compatible if there
exists a parent POVM Gy, where ; =jij, - jpand j, € {1,...,n.}, such that 5 6;.dG7 = Agjx> that is, we
obtain the original POVM elements as marginals of the parent POVM.

Similarly to section 2.2, we can define noise models through the maps N: POVM}>" — P(POVM_}~")
suchthat N: {A; } — Nia,,) © POVM}" ™. Givena noise model such that each noise set contains at least
one jointly measurable set of measurements, we can define the corresponding incompatibility robustness
measure, similarly to definition 3,

T]?A 1%} = sup {77 | Uk {Aalx} + (1 - 77) : {Na\x} € IM}
alx nel0,1]
{Najx} €Ngag )

For these measures, the properties discussed in sections 2.2 and 2.3 can also be naturally generalised to larger
sets of measurements, together with the corresponding properties of the noise models N. Then it is
straightforward to see that the general measures satisfy the same properties as the ones discussed for pairs in
section 3. These general versions can also be formulated as SDPs, and in the remainder of this appendix we
present these SDP formulations and provide lower and upper bounds on the measures.
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E.1.SDP
Here we write the formulations of all the measures introduced in the main text as SDPs.
max 7 min 1 + tr(X, xAgx)
"'(GT)T {Xa)x Jax aZ; ! !
4 st. G->0, n<1 st Xax = XLX, > 6 aXajx =0
MNagr = / 1 = ax
. r = — — t Au X
R L Y A > 3 e,
max 7 min 1+ Y tr(XacAapx)
n{G}> {Xalx Jax ax
77 >
P _ ) st Gr>0, < _ ) ost Xex = X0 D06 .aXax 20
TiAu) 1 ox
6i oG =nAgx + (1 —n)— 1
Z Tt Mhalx K Ny 1+ Z tr(}(a|xAu|x) > Z _trXa|x
L J a,x a,x ''x
max 7 ()I(r,,l‘,i(l):,( 1+ Z tr(Xaleulx)
r/,(G;}]‘ (€ ! a,x
(Babe - X=Xy T80
B - - s.t. x = " oo | >0
My =1 St G20 Be>0 Yhe=1-n =) T el L Bl 2
a
- 14 ) tr(X, A =
581,467 = Mate + ] Z (XapeAap) gﬁx
> ,
gx > tr)(al)c
max 7 min  trN
; {Gi); N, {Xajxtax
. tHjl; . st N=NT, Xo=X],
TI?X“M =q St Gj >0, Z Gj =1 Hj =0 = N> Z 61' ,aXa\x >0
7 e
a,x
Z 6jx,a(G]7 — H;) = nAa\x Z tr(Xa|an|x) >1
J a,x
min trN
max 7 N, (Xl
Gk t. N=N, Xgp=X'
s.t. = NT, =
. st. Gy >0, > Gy =1 alx alx
n(AAIx) = j = N 2 Z 6jx,aXa|x> Xa|x > 0-
>76;.4G7 = nA o
joadj = alx
f Ztr(XabcAabc) =1
a,x

E.2. Lower bounds
Here we derive lower bounds on some of the above measures in this general setting.
For 74, the following bound is presented in [16], equation (11)

d 1 k—1
M = E(l o) (ED)

and from (68) this same bound holds for /™ and 7% as well. and from (68) this same bound holds for 7/™ and 78
as well. Here we outline a few ways to improve on this bound.

One option is to apply the universal lower bounds for pairs, derived in the main text, successively on subsets
of pairs of measurements. Starting from k measurements, we group theminto k/2 or (k + 1) /2 pairs,
depending on the parity of k, and we compute the parent POVMs for these pairs defined in equations (28), (50),
and (59), corresponding to the universal lower bound. Therefore we end up with k/2 or (k + 1) /2
measurements, which are the parent POVMs. We repeat this process until we end up with only one pair of
measurements. Since we use universal lower bounds, the specific pairings do not matter, and we obtain a bound
that depends only on kand d. When k = 2" for instance, we get that the lower bounds on 74 and 78 are the nth
power of the corresponding lower bound for pairs, namely, equations (28) and (59), respectively. Note that
whenever k is 0odd, an asymmetry is introduced by the choice of which measurement is not paired with another
one, but we can overcome this problem by symmetrisation.

Let us illustrate this procedure on a triplet of measurements denoted by (A, B, C). For any pair (A, B) of
POVMs, we denote by G (A, B) their parent POVM used to derive universal lower bounds in section 3, for
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instance, equation (28) for 4. Then the following POVM is a parent POVM for noisy versions of A, B, and C,
with respect to the noise of ¢ in this case:

%[G(G(A, B), C) + G(G(C, A), B) + G(G(B, O), A)l. (E2)

For ¢ and any number of measurements k > 3 and any dimension d > 2, this procedure never improves
on equation (E1), except for triplets of qubit measurements for which it gives the bound (1 + 1/+/2) /3. Note
that we outperform this bound by completely solving this case of three measurements in dimension two in
section E.4.

For 7)™, the above procedure is made more complex by the fact that two parent POVMs are necessary. An
alternative bound can be obtained by plugging equation (E1) into (B7). Note that this requires the equivalent of €
in equation (B3) for more measurements, namely, a dimension-dependent number such that the set
{(tr(Aq ) — €Aqx) /(d — €)}isjointly measurable. Both procedures are possible and involve suitable
combinations of the parent POVMs introduced in this work. However, due to their complexity, we do not
present the resulting bounds.

For 18, we should compare the above procedure and the bound obtained by plugging equation (E1) into
(B9). For instance, for k = 3 and d = 4, the former gives 5/8 and the latter 3/5.

E.3. Upper bounds
The various upper bounds presented throughout the main text naturally generalise to more measurements. We
introduce the generalised quantities corresponding to equation (18)

trAuzlx
=> and )\ = max{ max Sp 6 A (E3)

a,x d ] a,x
and also those corresponding to equation (19)
trAq)x | - trAg) ; .
gd= Z(rT‘) , g' = Z L, g = me rTI’ and ¢’™ = min {mm Sp[z 6jx,aAux]}. (E4)
a,x X My X a j a,x

Using these definitions, the feasible points for the duals in section E.1 are

%]l - Aalx %]l - Aalx %Jl - Aa\x
Xax = —— Xax=-— and X, = -———, for nd, n', and 7P, respectively,
(f—g9d (f—ghHd (f—g"d
Agx — | A\ — oim .
Xax = 4 and N = _g . £ for '™,
G~ g™ f—gm d
Aax
Xax = Zelx and N:A-£ for ns.
fd fd

(E5)

Note that we have implicitly assumed that f = g* for all the measures. From the discussion below it turns out
that the equality holds only when all measurement elements are proportional to the identity operator, in which
case the set is trivially compatible. These feasible points give rise to the following bounds:

A —gd A—g' A—gP
d g d,up r g r,up P g p,up
Miage) S —g Miaad Mg S f—g Mg Magg S —e Maas
. A—gm . A
Jm o _ pmup g . — p8up
n(An\x) < f_ g)m - n{Aa\x)’ and n(An\x) < f - n(Au|x)' (E6)

Note that, from the inequalities in equation (E9) below and under the assumption f > A, we have

d,u I, \Uj jm,u; U]
max {74 > Mian g b S PRy S I S - E7)

E.3.1. Discussion of the feasible points. Here we first show that for all sets of measurements, the inequalities
fzg! and f>g¢f (E8)

hold, with equality if and only if all POVM elements involved are proportional to the identity. Then we also
derive the hierarchy used to derive equation (E7), namely,
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min{gd, g} > gP > g™ > 0. (E9)

These two inequalities imply that unless all POVM elements are proportional to the identity we have f > ¢* and
the bounds given in equation (E6) hold (which are generalisations to larger sets of measurements of the upper
bounds given in equations (30), (38), (43), (52), and (66) of the main text).

In order to prove the inequalities in equation (E8), we use the Cauchy—Schwarz inequality:

(trAg)? = [tr(l - Agp) P < tr(Dtr(A2,) = dtr(Am) (E10)

alx

For g9, this implies that

4o Ztr(Aau >Z(trAu|x) gl (E11)

For g*, we also use the concavity of the square-root, which implies that

1, 5 L} ) Ty 7 (tl‘Aa‘x) d
= - = X Au x = >
\/Ztr(AuM) \/nx > . tr(Al,) = Jix Z Jtr( | /nx (E12)

a=1 a=1"x a= X a= 1

where we have used equation (E10) to get the second inequality. This gives

tr(AZ, k[ &
=% " ”—%Z[ZMA m] Y=g (E13)

X X
Note that to have equality in the inequality in equation (E10), the eigenvalues of A, should all be equal, that is,
A, o 1. This shows that in order to have equality in the inequalities of equation (E8), all measurement operators
need to be proportional to the identity.
Regarding equation (E9), the inequality g4 > gP comes from

trA k trA " trA trA
TV A S T
x=1la=1 x=1 d a=1 d * d
The inequality g" > gP comes from
k n. k
x trA trA
=3 1 _ ) L(ZM] > Eminaﬂ _ (E15)
x Mx x=1 Mx\a=1 d x=1 d

The inequality gP > g'™ comes from tr(M) > dmin Sp(M) forevery d x d Hermitian matrix M, so that

gP = Zml n,
» (E16)
min {Z 8 a r ”lx} min {Etrz ;. aAax} min {mm Sp[z 0; aAulx)} = gm.

j j a,x j

tI‘Au|x

Lastly, the inequality g/™ > 0 comes from the positivity of the POVM elements involved in its definition, which
concludes the proof of equation (E9).

E.3.2. Alternative upper bounds. Here we provide alternative feasible points for the duals in Section (E.1) that
give rise to upper bounds that are in some cases tighter than the ones discussed above. Let us consider sets of
POVMs {A,, } such that no POVM element is zero. We can define new quantities very similar to the ones of
equations (E3) and (E4), namely,

trAﬂ X Aa X
f. =3 N, = max{max Sp[z 8 \ ]})

X dtrAa\X J a,x trAq)x
(E17)
d __ ro__ p_k d jm __ . : 5 Aﬁ|’C
8 = 8 =8 =, and gI" = min{minSp|} 5, :
d j ax tl’Aa‘,c
Using these we can derive bounds similar to those in equation (E6):
Mg Aax \ b
k trA r — &
for 4, 0%, and 7P, Xgx = ———= so that max{r]dA sy <nfy < ——%, (E18)
(ftr . g“:)d {Aa)’ {Aa) {Aax} ftr . gt[:
t':u\x - %]l Aw — gj’“ 1 : At g’m
for ni™, X, = r“‘”;m and N = ritzn <~ sothat N} | < ritin (E19)
(ftr - gJ )d f - gt)r d - ftr gtjr
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A A 1 A
for n8, Xgx = — 2 and N=2Y . = 5o that 77ng s

< . (E20)

ftr dtrA“b‘ ftr d o) ftr
Similarly to as in section E.3.1, the inequalities f > gtf =g, =8> gtjrm > 0 hold and give natural relations
between the bounds.

For the qubit measurements mentioned in section 4.2, namely, any rank-one POVM pair such that
A, = |a) (a|and the Bloch vectors of Blie on the xy-plane of the Bloch sphere, the parameters in equation (E17)
are f,_ = 2assuchapairisrank-one, A, = 1 + 1/+/2,and gtjrm =1-1 / V2 due to the orthogonality of the
Bloch vectors of the POVM elements of A and B. Therefore the upper bounds in equations (E18)—(E20) coincide
with the MUB values given in equation (69).

For rank-one projective pairs of measurements the bounds in equations (E18)—(E20) coincide with their
counterparts in equation (E6), but in general they are incomparable, that is, for different measurement pairs one
or the other might give the lower value. For the pair (A%, B%) used in Counterexample 1, the bound on 7¢ in
equation (E18) gives 3(J13 + 1)/10 = 1.3817, whereas the one in equation (E6) gives
(942 — 1)/14 ~ 0.8377. On the other hand, for the pair (A%, B) used in Counterexample 3, the bound on 74
in equation (E18) gives 1/~/2 = 0.7071, whereas the one in equation (E6) gives (4v/2 + 1) /7 = 0.9510. This
incomparability suggests that there may exist a more general way to construct such upper bounds, e.g. involving
polynomials in A, in the definition of X,,|,. We leave this question open for further work.

E.3.3. Tightness of the upper bound on 1% for MUBs.  We investigate the tightness of the upper bound on 78 in
equation (E6) for various MUB constructions. The relation (B9) between 74 and 78 is obviously also valid for
more than two measurements. Therefore, the cases in which the bounds on nd in [36] are tight, that is,

nd = (\ — k/d)/(k — k/d), giverise to tight upper bounds on 7% as well. This is because in this case

equation (B9) reads \/k < 18, which saturates the upper bound for 778 in equation (E6). In particular, for the
standard construction of MUBs in prime power dimensions [20] the bound on 78 in equation (E6) is tight when
k=dandk=d + 1.

The methods developed in [36] can also be applied to show the tightness of the upper bound on 78 in
equation (E6) in some additional cases. Specifically, applying the ansatz [36], equation (11) to the incompatibility
generalised robustness primal leads to optimal constructions in some cases. In particular, when the dimension is
d = 27, all subsets of size k € {2, 3,...,d + 1} of the standard construction of complete sets of MUBs saturate
the upper bound on 78 in equation (E6).

To show this, we use the notation of [36], appendix D. In this work the authors show that for the standard
MUB construction the marginals along j, of the operator G; defined in [36], equation (11) are diagonal in the
basis {|¢7)} . Thus, the corresponding value of 77 in the incompatibility generalised robustness primal is

n= mina,x <§0§|[Z 6]x,aGf]|‘PZ> (EZI)

)

Moreover, by definition [36], equation (11) we have

Z(wZI[Z 5;;,uG;]|soZ> =3 tr[G;Z 8jal0) <soj§|] = S (GiS) = S u(\G) = M. (E22)
j j ax j j

a,x

Therefore, ifall (}3=5 6, 4G7l¢}) are equal, regardless of a and x, we can replace the minimum in
equation (E21) by the total sum divided by the number of terms:

1

7:_
'~ &

(¢§I[Z 5,-X,GG;-]|¢;‘> = % (E23)
j

and \/k is alower bound for 772"" () As it coincides with the upper bound for 78 in equation (E6) (recall that
f = kfor rank-one measurements), the tightness of this upper bound follows.

When d = 2', one can see from [36], appendix D 3 that (¢}[3"7 6; 4G;l}) is indeed independent of aand x.
This shows that if d = 27, then for the standard construction of MUBs, we have n¢ = \/k for all sets of
k € {2, 3,...,d + 1} projective measurements onto k MUBs.

Another interesting example is given by triplets of MUBs in dimension d = 4. From [54], we know that all
possible triplets can be parametrised by three (real) parameters. For 4, depending on the choice of these
parameters, we get a different robustness, whereas for 78, they all give the same value, namely, 2/3.

Note however that the bound on 78 in equation (E6) is not always tight for MUBs. For k = 4 MUBsin
dimension d = 5, we get 78 &~ 0.5692 < 0.5693 ~ \/3.
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E.3.4. Upper bound on )™ for MUBs.  Below we show that for the standard construction of MUBs in odd prime
power dimensions [55], the bounds on 7™ and 78 in equation (E6) coincide. In order to show this, we need to
prove thatin this case gj‘“ = Oforallk € {2, 3,...,d + 1}. When k < d, thisisclear. For k = d and

k = d + 1, this minimum eigenvalue is reached, for instance, when we pick the first POVM element of each
measurement. We first use the notations of [36], appendix D 2 to prove the general case and then give a
simplified proofin the case of prime dimensions.

Here we give the proof when k = d = p, with p primeand x € I, the Galois field with d elements, which
singles out a particular choice of d MUBs that does not include the computational basis. The other cases, namely,
k = d + land k = d with one of the bases being the computational basis, can be treated similarly. Recall that
¢™ concerns the spectra of the operators 20,x0j,alalx for every f, see equation (E4). If we choose f =0, we get

2
S lep (el =+ X 30 e = 14 (-1, (E24)
x€Fy d LI'cFy xeFy leF%
where the trace over the Galois field F, is defined by Tra = a + a’+ --- +a?~!so thatit belongs to
{0, 1,...,p — 1}. Note that the convention used here to label the POVM elements is different than the one in the
main text, as it starts from 0 instead of 1. For the operator in equation (E24), the vector (JI) — | — I))isan
eigenvector with eigenvalue 0 for I € [;\ {0}, which concludes the proof.
Asan easier illustration, we consider the case when d is an odd prime. In this case, a complete set of MUBs is
given by the computational basis {|) } =, and
lo*) = L df gaedirab)y, (E25)
“ o Vd D

where x labels the bases and a the vectors. equation (E24) then takes the form

d—1 d—1 d—1 d—1
X x 1 2ir (2 )12
2olep)(pgl = = 2 30 eI (I =1+ 3710 (1), (E26)
x=0 d LI'=0 x=0 =1
forwhich|l) — | — I)isan eigenvector with eigenvalue O for I € {1, 2,...,d — 1}.

E.4. Most incompatible triplets of qubit measurements

Below we analyse the incompatibility robustness of a triplet of qubit MUBs, and show that they are among the
most incompatible triplets in dimension 2 under 19, P, '™, and 7#. For a triplet of projective measurements
onto three qubit MUBs (AMUB, BMUB CMUB) ‘the quantities defined in equations (E3) and (E4) are f = 3,
A=0G++3)/2,¢4=¢g" =3/2,and g™ = (3 — 3)/2, so that the bounds of equation (E6) read

4 1 - 1 1
Tsmus < Mimus S Nl Mios < V3 — 1, and 9§y, < Py 1+ B) (E27)

where we write 775 ., to denote the incompatibility robustness of (AMUB, BMUB, CMUEB),

Now we derive universal lower bounds for the above measures for triplets of qubit measurements, and show
thata triplet of MUBSs saturates these. We start with 19, which is post-processing monotonic, and therefore it is
enough to derive bounds on it for rank-one triplets (A, B, C), for which we introduce

1 33 —4

Gabc = T = [AaBb Cc + Aa CcBb + Bb CcAa + BbAa Cc + CcAaBb + CcBbAa] + —
209 — V3) 2

53

X [tr(Bp)tr(C)Aa + tr(Aa)tr(C) By + tr(Aa)tr(By) Cc] + %tr(Aa)tr(Bb)tr(cc)ﬂ}-

(E28)

We show that this is a valid feasible point for the primal for 19 in section E.1 together with = 1/+/3. The
correctness of the marginals is immediate. The positivity follows from a tedious but straightforward
computation in which we express the eigenvalues of G, as functions of the overlaps between A, and By, B, and
C,and C.and A, (which is possible, because we are dealing with 2 x 2 matrices). This shows that

1
d
Napc = f’

which also holds for non-rank-one triplets by post-processing monotonicity of this measure.
Regarding the other measures, the above inequality immediately holds for 7P due to the obvious
generalisgtion of equation (68) to triplets of measurements.
For )™, the method described in equation (B2) can be used for triplets as well to get
v]th)C +1 - ni,B)C) 5/2 < 7 pc> Wheree = 3 — lbecause

(E29)
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tr(A.)l — (V3 — DA, 1 1 1
= —[tr(A)l — Al + |1 — — |tr[tr(A )] — A, ] =, E30
PR NG [tr(Aq) ] NG [tr(Aq) ] 5 (E30)
and similarly for B, and C.. The validity of ¢ is then guaranteed by applying the bound obtained just above on 74
to the measurements ({tr(A,)l — A, },, {tr(By)1 — By}, {tr(C)1 — C.}).

For 78, the method described in equation (B9) can be used for triplets as well to get ’17%) sc T a - ni’ B, o) /

2< 8 50
Therefore, we have proven that
1 d 4 1 1
— < <P, V3 —1<y™ , and |14+ —=]|<n8, . E31
N Mac S Mapc S Ma,B,c 2( 5)°S T'A,B,C (E31)

Asatriplet of projective measurements onto three qubit MUBSs reaches these lower bounds from equation (E27),
they are among the most incompatible triplets of qubit measurements with respect to 14, 7P, ni™, and 8.
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