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Abstract

Quantum information theory is a rapidly growing field that harnesses the power of

microscopic physical systems in information theoretical tasks. Some of its predictions

could have a tremendous impact on near-term information technology, such as exponential

speedup in computational tasks or unconditionally secure cryptographic protocols. These

perspectives are highly promising, however, they call for verification schemes: one must be

able to certify the correctness of quantum computations, as well as to verify the security

of cryptographic devices.

While such verification schemes already exist, and are thoroughly studied, there are

still a few drawbacks associated with them. The most rigorous certification scheme of

“self-testing” is rather difficult to implement in the laboratory, and results in the high-

dimensional setting are lacking, despite the apparent advantage of high-dimensional sys-

tems. Moreover, most verification methods focus on certifying the exact physical setup

rather than some relevant properties thereof, which is impractical in some cases.

In the current thesis, I address the above shortcomings by devising experimentally

friendly certification schemes of relevant properties in the high-dimensional setting. Specifi-

cally, I focus on the experimentally less demanding task of “prepare-and-measure” scenarios,

in which, together with my collaborators, I introduce two methods of certifying quantum

states and measurements. The first method concentrates on verifying the genuine high-

dimensional nature of quantum states and measurements, a property that we refer to as

‘irreducible high-dimensional systems’. Together with my collaborators, we demonstrate

the applicability of our methods in a photonic experiment in dimension 1024, proving the

irreducibility of the implemented quantum optical setup.

My second method uses the same prepare-and-measure protocol, however, this time I

concentrate on certifying a class of measurements that has proven to be immensely useful

in quantum information theory, mutually unbiased bases. Together with my collaborator,

we show that these measurements can be certified in the prepare-and-measure scenario

in an experimentally feasible manner. Moreover, using our results, we are able to cer-

tify two additional properties of the measurements, namely their capability of generating

randomness, and their incompatibility robustness.

Finally, I focus on the above mentioned relevant property of measurements, incom-

patibility robustness, which measures to what extent a pair of quantum measurements is

not jointly measurable. Incompatible measurements turn out to be a useful resource in

various quantum information theoretic protocols, and therefore it is an important task to
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quantify the extent to which a pair of measurements is incompatible. Together with my

collaborators, we analyse a wide class of incompatibility robustness measures, correspond-

ing to generic noise models. We show that some of the measures that are often used in

the literature do not satisfy certain natural properties. Moreover, we show that according

to one of the measures, mutually unbiased bases are among the most incompatible pairs

of measurements in every dimension, but also that this is not the case for some other

measures. Our results highlight that despite the significant effort dedicated to this topic,

a thorough understanding of incompatibility robustness measures is still lacking in the

quantum information community.
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Streszczenie

Teoria informacji kwantowej jest aktywnym kierunkiem badawczym, którego celem jest

wykorzystanie mikroskopowych układów fizycznych do zadań związanych z przetwarzaniem

informacji. Niektóre odkrycia na tym polu mogą mieć w niedalekiej przyszłości

ogromny wpływ na technologie związane z przetwarzaniem informacji, np. eksponencjalne

przyspieszenie w zadaniach obliczeniowych lub bezwarunkowo bezpieczne protokoły kryp-

tograficzne. Te perspektywy są obiecujące, ale aby je osiągnąć, potrzebne są odpowiednie

procedury weryfikacji: musimy być w stanie potwierdzić, że obliczenia kwantowe dokony-

wane są w sposób poprawny lub że implementacja protokołu kryptograficznego jest bez-

pieczna.

Procedury tego typu już istnieją, ale mimo intensywnych badań nie spełniają one

jeszcze wszystkich wymagań. Najbardziej rygorystyczna metoda certyfikacji, zwana

“samotestowaniem”, jest trudna do implementacji w eksperymencie. Ponadto istnieje

niewiele wyników, które można zastosować do układów wysokowymiarowych, mimo że

układy te są przydatne w wielu naturalnych zadaniach. Poza tym większość istniejących

metod skupia się na certyfikacji całego układy fizycznego, a nie na konkretnych pożądanych

własnościach, co w niektórych przypadkach jest niepraktyczne.

W ramach mojej pracy doktorskiej proponuję nowe i przyjazne z eksperymentalnego

punktu widzenia procedury certyfikacji konkretnych istotnych cech układów wysokowymi-

arowych. W scenariuszu “przygotuj-i-zmierz”, który jest mniej wymagający z eksperymen-

talnego punktu widzenia, wraz ze swoimi współpracownikami proponuję dwie metody cer-

tyfikacji stanów i pomiarów kwantowych. Pierwsza metoda pozwala weryfikować prawdzi-

wie wysokowymiarową naturę stanu i pomiarów kwantowych, co nazywamy “nieredukowal-

nością” układu. Wraz ze współpracownikami zastosowaliśmy tę metodę do fotonicznego

eksperymentu w wymiarze 1024, gdzie pokazaliśmy, że kwantowo-optyczny układ zaimple-

mentowany w eksperymencie jest nieredukowalny.

Druga metoda używa tego samego protokołu w scenariuszu “przygotuj-i-zmierz”, ale tym

razem skupiam się na certyfikowaniu pewnej klasy pomiarów, które są niezwykle użyteczne

w teorii informacji kwantowej: baz wzajemnie nieobciążonych. Wraz ze współpracownikiem

pokazaliśmy, że te pomiary mogą być certyfikowane w scenariuszu “przygotuj-i-zmierz” w

warunkach realistycznych z eksperymentalnego punktu widzenia. Ponadto byliśmy w stanie

certyfikować dwie dodatkowe własności pomiarów: ich zdolność do generowania losowości

i niekompatybilność.

W ostatniej części skupiam się na niekompatybilności pomiarów, a konkretniej na mi-
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arach opartych na odporność na szum, które kwantyfikują w jakim stopniu dwa pomiary

są niekompatybilne. Zrozumienie tych miar jest ważne, gdyż niekompatybilne pomiary

są użytecznym zasobem w wielu kwantowych protokołach. Wraz ze współpracownikami

zanalizowaliśmy szeroką gamę miar niekompatybilności, które odpowiadają naturalnym

modelom szumu. Pokazaliśmy, że niektóre z miar, które są często używane w literaturze,

nie spełniają pewnych naturalnych wymogów. Ponadto pokazaliśmy, że według jednej z

miar bazy wzajemnie nieobciążone znajdują się wśród najbardziej niekompatybilnych po-

miarów (w każdym wymiarze), ale to stwierdzenie nie jest prawdą dla innych miar. Nasze

wyniki pokazują, że mimo pokaźnego wysiłku badawczego w tej tematyce, nasze zrozumie-

nie miar niekompatybilności pomiarów wciąż jest niepełne.
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Part I

Summary of PhD Dissertation

I. INTRODUCTION

The main objective of physics (and of any natural science) is to describe and predict

phenomena that occur in the world that surrounds us. Why does the Sun rise and set

at a particular position? Why do certain objects – let them be enormous, like a star, or

minuscule, like an atom – attract each other? How can we use these observations to design

new tools that facilitate our everyday lives?

In the last few centuries – which have seen an unprecedented progress of human well-

being – the first and foremost tool for answering such questions has been to devise math-

ematical models. Such models provide a universal language in which descriptions and

predictions can be formulated, and they work incredibly well with the other cornerstone

of science: experiments. The axiomatic structure of mathematics makes it possible for

mathematical models to precisely prescribe an experiment, and to describe its outcome in

an unequivocal manner. This also implies that theories based on mathematical models can

be tested : in case experiments confirm their predictions, they are temporarily admitted.

However, this status never lasts forever – whenever an experiment contradicts with its

predictions, the theory should be refined, its applicability should be restricted, or, in the

most extreme case, it should be completely dismissed. This tedious and never-ending trial

and error process is how science has always been advancing.

About a hundred years ago, an extremely successful physical theory started to emerge:

quantum theory aims at describing and predicting the behaviour of microscopic physical

systems, and it does so with outstanding precision. As an example, one of the predictions

of quantum electrodynamics is the slight deviation of the electron magnetic moment from

the value g
2 = 1 predicted by standard relativistic quantum mechanics. This deviation was

recently measured experimentally to take the value g
2 = 1.00115965218085(76), a precision

of 14 digits (11, if considering the deviation only) [OHDG06]. With experiments like this,

quantum theory is arguably one of the most thoroughly tested physical theories, and it has

been holding up to scrutiny incredibly well for the last century.

This extreme precision comes at a somewhat unexpected cost: in many cases, the

predictions of quantum theory are in stark contrast with our everyday intuitions. Most

notably, Einstein, Podolsky and Rosen pointed out in 1935 [EPR35], and later Bell for-
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malised in 1964 [Bel64], that the predictions of quantum theory cannot be explained by any

local realistic theory. What this means is that if the predictions of quantum theory are

correct, then we cannot think of physical systems as having pre-defined (real) properties in

confined (local) regions of space, and of measurements as simply revealing these properties

to us.

Einstein, Podolsky, Rosen and Bell proposed an experiment in which two particles are

sent to two distant laboratories. In each of the laboratories, the experimenters simul-

taneously perform a measurement on their particle, and note down the outcome of this

measurement. They repeat this procedure many times with new particles, in each round

possibly choosing different measurements. Since the laboratories are far away, and the

measurements only take a short time, the experimenters cannot communicate during in-

dividual rounds. After many rounds, the experimenters gather their respective outcome

statistics and meet to look at the statistics of the whole experiment. Astoundingly, ac-

cording to quantum theory, in some cases they might find that these statistics cannot be

explained by local realism. That is, if the experimenters were to assume that their respec-

tive particles had some well-defined properties (possibly different ones in each round) which

the measurements could read out, they would be unable to reconstruct their experimental

data. Crucially, such experiments have recently been performed in so-called loophole-free

Bell tests [HBD+15, GVW+15, SMSC+15]. The results confirm with very high fidelity

that the predictions of quantum theory are indeed correct, and Nature cannot be modelled

in a local realistic manner.

A rapidly developing field that harnesses such extraordinary feats of quantum theory is

quantum information theory. It studies the power of microscopic particles in information

theoretical tasks, such as computation or communication. Exploiting phenomena that can-

not be explained in any classical (local realistic) theory, the relatively new field of quantum

information theory has already led to promising, and potentially paradigm-shifting results.

Some of them give us the prospect of performing computational tasks – such as factorising

astronomically large numbers [Sho94], or simulating molecules consisting of a huge num-

ber of atoms [Fey82] – that are unfathomable with currently available computers. Other

results open up the possibility of designing communication devices that are unhackable by

any agent that is restricted by quantum theory [BB84, Eke91].

While these prognoses are immensely impressive, it is apparent that they call for ver-

ification schemes. How can we be sure that a quantum computation provides the right

answer, if there is no way to reproduce it on a classical computer? How do we certify that
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the “secure” communication device – potentially obtained from an untrusted party – is not

leaking any information to adversaries? Can an everyday user confirm these vital claims

without having to understand all the intricacies of quantum theory and without having to

track down the movement of every individual atom?

Somewhat fortunately, Bell’s results also provide a way for a purely classical user to

certify quantum devices in so-called self-testing scenarios [MY98, MY04, MMMO06]. In

some Bell-type experiments, the experimenters are able to characterise their devices up

to the minimal freedom that is allowed within quantum information theory. Importantly,

there are also robust self-testing results [BLM+09, MYS12, YVB+14, BNS+15], that allow

for an approximate characterisation in imperfect experimental realisations [TWE+17]. This

makes making self-testing statements applicable in real-world scenarios, such as quantum

computing or cryptography.

Self-testing results are extremely powerful, however, this power comes with a few draw-

backs. First of all, these experiments are exceptionally difficult to implement in the labora-

tory – notice the time difference between Bell’s theorem in 1964, and the first loophole-free

Bell test in 2015: more than 50 years! Second of all, the rigid self-testing statements are

not always practical: in many cases, the users might not be interested in certifying their

devices up to the minimum theoretically allowed freedom, but would rather certify certain

relevant properties of the physical systems and measurements. Lastly, deriving self-testing

statements for systems with dimension (number of degrees of freedom) larger than two

is also difficult theoretically, which is apparent from the lack of results in the scientific

literature. On the other hand, current technology and experiments have entered a stage

when they can prepare and measure high-dimensional quantum systems reliably with high

precision [DLB+11, FLP+12, MMZ16]. Such high-dimensional systems have a provable ad-

vantage regarding noise tolerance [HP13], and their use seems inevitable if we are aiming

to increase the communication capacity of existing devices, such as optical fibres [RFN13].

Therefore, in summary, new, experimentally friendly verification schemes are needed, that

certify relevant properties even in the high-dimensional regime.

One example of a relevant property of quantum measurements, that also turns out to

be essential for Bell-type experiments, is measurement incompatibility [Lud54, BLPY16].

This is yet another counter-intuitive quantum phenomenon: Some measurements cannot

be performed simultaneously on a single copy of the physical state. That is, sometimes

we cannot learn two different properties of a single physical system. Such measurements

are called incompatible, and they turn out to be a useful resource in Bell-type experiments
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[WPGF09], for the so-called Einstein–Podolsky–Rosen steering [QVB14, UBGP15] and

state discrimination tasks [CHT19]. Therefore, it is desirable to characterise to what

extent certain measurements are incompatible. Such measures of incompatibility are often

studied in the literature [HMZ16], however, their properties and the relations between

them are not well-understood.

In the present thesis, together with my collaborators, I address the above mentioned

shortcomings in the following ways:

• I develop experimentally friendly certification schemes for quantum states and mea-

surements, and I work together with an experimental team to demonstrate that these

methods are applicable with currently available technologies.

• I develop methods that certify relevant properties of quantum states and measure-

ments, instead of the usual rigid self-testing statements.

• My results are valid for arbitrary dimensions, surpassing most known results that

only apply to dimension two.

• I analyse a wide class of incompatibility measures. I derive universal bounds on them

and show that some widely used measures do not certify certain natural properties.

I also show that what constitutes the most incompatible measurement pair depends

on which measure we choose.

The remainder of this summary is organised as follows: In section II, I formally in-

troduce the relevant notions, that is, the quantum formalism, certification schemes, and

measurement incompatibility. Then, in section III, I summarise the findings of the papers

that constitute the core material of this thesis, and that are attached to this summary in

their full extent. Lastly, in section IV, I outline some potential further research directions

emerging from the works that are introduced in section III and in the attachments.
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II. PRELIMINARIES

A. Quantum formalism

In this section I briefly introduce a few basic notions from quantum theory, that will

allow me to introduce different certification schemes and the notion of measurement in-

compatibility in the later sections.

1. Quantum states and measurements

Quantum information theory treats physical systems as information carriers, and mea-

surements as means of accessing the information that is encoded in the systems. This

allows for a very generic description of quantum states and measurements: If the informa-

tion content of two systems are the same, then their descriptions are also the same. For

example, the quantum analogue of a bit, called a qubit, can be realised in physically very

different ways (e.g. encoded in two possible paths of a photon [CY95], or in two isolated

low-energy states of a trapped ion [CZ95]). However, as long as their information content

is the same, quantum information theory describes them in exactly the same mathematical

manner, and it is not concerned about the details of the physical implementation.

What quantum information theory is concerned about, is measurement statistics. That

is, given a physical system and a measurement, what are the probabilities of the different

measurement outcomes, without referring to the physical meaning of these outcomes. Con-

sider for example the following two experiments: (i) we prepare a photon, send it through

a beam splitter that either transmits or reflects the photon, and place a photodetector

behind the beam splitter, and (ii) we prepare a trapped ion in one of its two lowest energy

states, and measure its energy. As long as we get the same probabilities for the outcomes,

say, “photon detected” and “lowest energy”, and also for “no photon detected” and “second

lowest energy”, these two experiments are described by the exact same model in quan-

tum information theory. Therefore, in the following we adapt the most general definitions

of quantum states and measurements that allow us to consistently define measurement

outcome probabilities.

The state space describes all the possible states a physical system might occupy. Not

all of these different states need to be perfectly distinguishable, and in order to be able to

measure distinguishability, we identify the state space with an inner product vector space.

The inner product of two states, 〈ψ|ϕ〉, is related to their distinguishability: if 〈ψ|ϕ〉 = 0,

then the states |ψ〉 and |ϕ〉 are perfectly distinguishable. On the other hand, if |ϕ〉 = α|ψ〉,
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that is, the state vectors are aligned, then they are indistinguishable. Therefore, we identify

|ψ〉 with all states of the form α|ψ〉, and pick a representative of this class such that

〈ψ|ψ〉 = 1. The distinguishability D(ψ|ϕ) of two states then corresponds to

D(ψ|ϕ) = 1− |〈ψ|ϕ〉|2 ∈ [0, 1]. (1)

If D(ψ|ϕ) = 0, then ψ and ϕ are indistinguishable, whereas if D(ψ|ϕ) = 1, then they are

perfectly distinguishable. Therefore, to describe the state space, we need an inner product

vector space that has the same number of perfectly distinguishable (i.e. orthogonal) ele-

ments as the number of perfectly distinguishable possible physical states. In any quantum

theory – let it be quantum electrodynamics or quantum information theory – to every

physical system, we assign a Hilbert space:

Definition II.1. A Hilbert space H is a linear space over the field C of complex numbers,

with an inner product 〈.|.〉, such that all Cauchy series are convergent under the norm

induced by this inner product.

Physical states then correspond to normalised elements of this Hilbert space:

Definition II.2. A physical state is described by |ψ〉 ∈ H, such that 〈ψ|ψ〉 = 1.

It is clear then that the dimension of the Hilbert space corresponds to the number

of perfectly distinguishable quantum states. The historic example of this mathematical

construction is Schrödinger’s model of a particle moving in one dimension [Sch26]:

Example II.3. The relevant Hilbert space for a particle moving in one dimension is H =

L2(R), the space of square-integrable complex functions on R.

• The inner product of ψ(x) ∈ H and ϕ(x) ∈ H is defined as

〈ψ(x)|ϕ(x)〉 =

∫

R
ψ̄(x)ϕ(x)dx. (2)

• States correspond to unit norm elements of the Hilbert space, ψ(x) ∈ H, such that
∫

R
ψ̄(x)ψ(x)dx = 1. (3)

• The probability of finding a state ψ(x) in the region S ⊆ R is
∫

S
ψ̄(x)ψ(x)dx. (4)
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Notice that the normalisation 〈ψ|ψ〉 = 1 corresponds to the fact that the particle is

found somewhere with probability 1. It is also worth noting that the choice of this Hilbert

space is not arbitrary: every Hilbert space that has the same dimension as the cardinality

of R is isometric to L2(R) [Con94].

In the above framework, an experimenter might be able to prepare infinitely many

perfectly distinguishable states, localised at different points x on the real line R. Setting

aside the fundamental ambiguities of this possibility, the practicality of preparing infinitely

many perfectly distinguishable states is severely limited. Especially if the aim – as in

quantum information theory – is to encode a message in a state, or to use it to perform

some computation, as practical messages and computations are always finite. The number

of perfectly distinguishable states corresponds precisely to the Hilbert space dimension,

and therefore in the following we will focus solely on finite-dimensional Hilbert spaces.

Again, there is a canonical choice of the Hilbert space for every fixed finite dimension

[Con94]:

Theorem II.4. Every d-dimensional Hilbert space H is isometric to Cd, the space of

d-dimensional complex vectors, with the usual scalar product.

Therefore, d-dimensional quantum states correspond to d-dimensional complex vectors.

One might think of an abstract state |ψ〉 ∈ Cd as an information theoretical resource,

capable of encoding d perfectly distinguishable messages. Let us take the example of

a photon passing through a beam splitter. A beam splitter transmits the photon with

probability p (the transmittance), and reflects it with probability 1− p. Let us denote the

transmittance path by “T ” and the reflection path by “R”. Also let us denote the state

of a transmitted photon by |T 〉, and the state of a reflected photon by |R〉. If our beam

splitter transmits every photon (p = 1), then the photon will occupy the state |T 〉 in all

cases, which can be certified by placing a detector behind the beam splitter (into the path

“T ”). Indeed, in an ideal experiment this detector will always detect a photon. On the

other hand, if our beam splitter reflects every photon (p = 0), then the photon will occupy

the state |R〉 in all cases, and the above detector will never detect a photon. That is, the

states |T 〉 and |R〉 are perfectly distinguishable (distinguishable with probability 1) using

a detector placed behind the beam splitter. Note, however, that for any other value of

the transmittance, p ∈ (0, 1), the resulting state will not be perfectly distinguishable from

either the state |T 〉 or |R〉, as the detector will detect a photon with probability p. This

means that the probability of distinguishing this state from, say, |R〉 is p < 1. Having two

(and no more) possible perfectly distinguishable states in this experiment, this photonic
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state can be described by a two-dimensional Hilbert space:

Example II.5. The state of a photon passing through a beam splitter can be described by

a vector |ψ〉 ∈ C2. If we define an orthonormal basis {|T 〉, |R〉} on C2, then any such state

can be written as

|ψ〉 = αT |T 〉+ αR|R〉, 〈ψ|ψ〉 = |αT |2 + |αR|2 = 1. (5)

For example, a photon passing through a beam splitter with transmittance 1
2 can be described

as |ψ〉 = 1√
2
(|T 〉+ |R〉).

The above construction – a two-dimensional quantum system – is called a qubit, and it

is one of the fundamental building blocks of quantum information theory. One can think

of a qubit as the quantum equivalent of a bit, which is the fundamental unit of information

in classical information theory. A qubit can encode two perfectly distinguishable messages

(for example, |T 〉 and |R〉), just like a classical bit, but also any combination of these

messages of the form in Eq. (5). On the other hand, a classical bit takes either the value

“0” or “1”. It is therefore apparent that the information theoretical potential of a qubit

might supersede that of a classical bit.

How do we extract the encoded information from a quantum state? We have already

seen an example above, using a photodetector. Putting the detector behind the beam

splitter is equivalent to asking the question “is the photon transmitted?”. The answer to

this question is “yes” (alternatively “T ”) if we detect a photon, or “no” (alternatively “R”,

because in this case we assume that the photon is reflected) if we do not detect any photons.

That is, we extract some information encoded in the path degree of freedom of the photon.

The above scheme is an example of a quantum measurement, which is the most general

way of retrieving information from a quantum state. Physically it corresponds to measur-

ing some property of the system (e.g. its position), and the answer carries some physical

meaning (e.g. “in the transmittance path” or “in the reflection path”). In quantum infor-

mation theory, on the other hand, we are only interested in the probability with which

the different outcomes occur. It is therefore of little relevance how we label the outcomes,

and it is convenient to call for example the outcomes “T ” and “R” simply “0” and “1”,

analogously to a classical bit. Again, in practical scenarios, it is reasonable to assume that

an experimenter has only access to measurements with finitely many possible outcomes.

Therefore, mathematically a finite-outcome measurement is a linear map that takes any

quantum state, and maps it to a discrete probability distribution, corresponding to the

outcome probabilities. The most general way to define such a map is a positive-operator

valued measure (POVM):
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Definition II.6. A finite-outcome quantum measurement corresponds to a finite-outcome

positive-operator valued measure (POVM). A POVM with n outcomes defined on the

Hilbert space H is a set of n operators, {Ma}na=1 from the set of bounded operators B(H)

on H, such that

Ma ≥ 0,
n∑

a=1

Ma = I, (6)

where I is the identity operator on H and Ma ≥ 0 means that Ma is positive semidefinite.

The operators Ma are called POVM elements, measurement operators or effects.

Given a state |ψ〉 ∈ H, the probability of outcome “a” upon measuring M on the state |ψ〉
is given by the Born rule:

p(a)ψ = 〈ψ|Ma|ψ〉. (7)

It is clear that {p(a)ψ}na=1 is indeed a probability distribution for every |ψ〉 ∈ H, that
is, from Eqs. (6) and (7) it follows that

p(a)ψ ≥ 0 ∀a = 1, . . . , n,

n∑

a=1

p(a)ψ = 1 ∀|ψ〉 ∈ H. (8)

The above example of measuring whether a photon is transmitted through a beam splitter

can also be formulated as a POVM:

Example II.7. Measuring whether a photon is transmitted through a beam splitter corre-

sponds to the POVM

{|T 〉〈T |, |R〉〈R|} (9)

on the Hilbert space C2, where |T 〉〈T | (|R〉〈R|) is the rank-1 projection onto the vector |T 〉
(|R〉). That is, given a two-path photon state

|ψ〉 = αT |T 〉+ β|R〉, |αT |2 + |αR|2 = 1, (10)

the probability of obtaining the answer “T ” is

p(T )ψ = 〈ψ|T 〉〈T |ψ〉 = |αT |2 , (11)

and the probability of obtaining the answer “R” is

p(R)ψ = 〈ψ|R〉〈R|ψ〉 = |αR|2 . (12)

The above is also an example of an important class of measurements, projective mea-

surements.
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Definition II.8. A POVM {Pa}na=1 is a projective measurement if P 2
a = Pa for all

a = 1, . . . , n.

While POVMs are the most general definition of quantum measurements, the definition

of quantum states in Definition II.2 can still be generalised. First, notice that the outcome

probabilities in Eq. (7) do not change if we multiply the state |ψ〉 with a complex number

of modulus 1 (a phase factor). Therefore, it is convenient to identify the state |ψ〉 with the

rank-1 projector |ψ〉〈ψ| projecting onto |ψ〉, which is invariant under the multiplication of

|ψ〉 with a phase factor. Then, the Born rule in Eq. (7) can be written as

p(a)ψ = tr(|ψ〉〈ψ|Ma), (13)

which is now linear in the state |ψ〉〈ψ|. This allows for the proper treatment of the following

state preparation scenario: Imagine that the experimenter has access to two devices, one of

them preparing the state |ψ1〉〈ψ1|, while the other one preparing |ψ2〉〈ψ2|. Let us assume

that the experimenter first flips a biased coin, which gives “heads” with probability q, and

then, based on the outcome of the coin-flip, prepares the state |ψ1〉〈ψ1| or |ψ2〉〈ψ2|. If

we regard the experimenter, the two preparation devices and the coin as one big state

preparation device, then the output of this device is

ρ = q|ψ1〉〈ψ1|+ (1− q)|ψ2〉〈ψ2|, q ∈ [0, 1], (14)

a convex combination of the states |ψ1〉〈ψ1| and |ψ2〉〈ψ2|. It is easy to see that the outcome

probabilities of any measurement M on this state are

p(a)ρ = q · p(a)ψ1 + (1− q) · p(a)ψ2 , (15)

which still defines a probability distribution. Since we have just given an algorithm for

its preparation, ρ is still a physical state, and therefore we should allow for such convex

combinations in our theory. Therefore, the most general model for a quantum state is the

so-called density operator :

Definition II.9. The set of quantum states on the Hilbert space H is the convex hull of

states of the form |ψ〉〈ψ|, that is,

S(H) = Conv{|ψ〉〈ψ| , |ψ〉 ∈ H, 〈ψ|ψ〉 = 1}. (16)

Equivalently, a quantum state on the Hilbert space H is described by a density operator

ρ ∈ B(H), such that

ρ ≥ 0, tr ρ = 1. (17)
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The outcome probabilities of a POVM {Ma}na=1 on the state ρ are given by the Born rule:

p(a)ρ = tr(ρMa). (18)

Remark II.10. States of the form ρ = |ψ〉〈ψ| are called pure states.

Since positive operators can be diagonalised, every d-dimensional quantum state can

be written as

ρ =

d−1∑

j=0

λj |ψj〉〈ψj |, (19)

where λj ≥ 0 are the eigenvalues and |ψj〉 are the corresponding (orthonormal) eigenstates

of ρ (in case ρ is not full-rank, some λj are 0, and the corresponding |ψj〉 can be chosen to

be an orthonormal basis of the kernel of ρ), and we also have that tr ρ =
∑

j λj = 1.

Similarly, we can also allow for convex combinations of classical states. For a bit, this

means taking convex combinations of “0” and “1”, leading to the generic two-dimensional

classical state

c = p|0〉〈0|+ (1− p)|1〉〈1|, p ∈ [0, 1]. (20)

where, for a unified description of classical and quantum states, we have identified the

classical state “0” (“1”) with the fixed projector |0〉〈0| (|1〉〈1|) on C2. Similarly, we can

define a generic d-dimensional classical state:

Definition II.11. Let us fix an orthonormal basis {|j〉}d−1
j=0 on Cd. Then, every d-

dimensional classical state can be written as

c =
d−1∑

j=0

pj |j〉〈j|, (21)

where {pj} is a probability distribution, and |j〉 is a fixed basis on Cd.

It is clear from the Eqs. (19) and (21), that the set of d-dimensional classical states is

a strict subset of the set of d-dimensional quantum states, i.e. one can think of classical

states as quantum states that are diagonal in a fixed basis. In the following, we will use a

canonical representation of this fixed basis, usually referred to as the computational basis:

Definition II.12. The set of basis vectors {|j〉}d−1
j=0 on Cd can be represented as the com-

putational basis, with vector elements

(j)k = δj+1,k, j = 0, . . . , d− 1, k = 1, . . . , d. (22)

As an example, the computational basis on a qubit space C2 can be written as

{|0〉, |1〉} =






1

0


 ,


0

1





 . (23)
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2. Composite systems, local realism and entanglement

So far we have only been concerned with the description of a single physical system.

However, the natural question arises: Having a description of two systems, how to describe

the composite system of the union of these two? The axioms of quantum theory provide a

prescription for such a scenario.

Definition II.13. Given two physical systems corresponding to the Hilbert spaces HA and

HB, the composite system corresponds to the tensor product Hilbert space, HA ⊗HB.

The above definition applies to both the description of states and measurements. The

composite state of the systems corresponding to ρA on HA and ρB on HB is ρ = ρA ⊗ ρB.
Similarly, given a measurement {Aa} onHA and {Bb} onHB, we can define a measurement

{Mab = Aa ⊗ Bb} on HA ⊗ HB. As an example, the state of two independent two-path

photons, one in its path “0” and the other in its path “1”, is written as |ψ〉〈ψ| = |0〉〈0|⊗|1〉〈1|.
Then, given which-path measurements {|0〉〈0|, |1〉〈1|} on both photons, we can construct

the measurement {|0〉〈0| ⊗ |0〉〈0|, |0〉〈0| ⊗ |1〉〈1|, |1〉〈1| ⊗ |0〉〈0|, |1〉〈1| ⊗ |1〉〈1|} on the two-

photon system, with four different possible outcomes. In order to obtain the state of one

of the subsystems from the total state, we can apply the partial trace, which is defined on

the above simple tensors as

trB(ρA ⊗ ρB) = tr(ρB)ρA = ρA,

trA(ρA ⊗ ρB) = tr(ρA)ρB = ρB,
(24)

and is extended to arbitrary tensors linearly.

Note that the probabilities on the tensor product Hilbert space are still well-defined

and that in the above simple cases they factorise:

p(ab)ρ = tr(ρMab) = tr [(ρA ⊗ ρB)(Aa ⊗Bb)] = tr(ρAAa) tr(ρBBb) = p(a)ρAp(b)ρB . (25)

This simple fact reflects that the measurement statistics obtained from independent sys-

tems are also independent. Note, however, that on the tensor product Hilbert space

HA ⊗ HB much more general states than those of the form ρA ⊗ ρB can be defined.

Naturally, one might consider convex combinations of such states:

ρ =
∑

k

pk · ρkA ⊗ ρkB, pk ≥ 0,
∑

k

pk = 1. (26)

Having this state in mind, let us now consider a scenario in whichHA andHB correspond to

physical systems that are space-like separated, for example, two simultaneous experiments
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in two distant laboratories. Note that according to special relativity, no communication

is allowed between the two laboratories – such experimental setups are usually referred

to as nonlocal scenarios. Consider sets of measurements on the two subsystems HA and

HB, denoted by {Axa} and {By
b }, where a and b are the usual outcome indices, and x and

y label different measurements (measurement settings). Then the outcome probabilities

p(ab|xy)ρ = tr[ρ(Axa⊗By
b )] should intuitively factorise to convex combinations of p(a|x)ρkA

·
p(b|y)ρkB

. It is easy to check that this is precisely the case, as

p(ab|xy)ρ = tr

[(∑

k

pk · ρkA ⊗ ρkB

)
(
Axa ⊗By

b

)
]

=
∑

k

pk tr(ρkAA
x
a) tr(ρkBB

y
b )

=
∑

k

pk · p(a|x)ρkA
· p(b|y)ρkB

.

(27)

In the following, we will see that all outcome statistics obtained from local realistic

models are of the above form. Local realism states that physical systems have well-defined

local properties, that is, every system is in one of finitely many (as per our previous

assumption) locally perfectly distinguishable states,

ρ = |jA〉〈jA| ⊗ |jB〉〈jB|, jA = 0, . . . , dA − 1, jB = 0, . . . , dB − 1, (28)

or potentially in a convex combination of such states,

ρ =
∑

λ∈Λ

p(λ) · |jA(λ)〉〈jA(λ)| ⊗ |jB(λ)〉〈jB(λ)|, (29)

where p(λ) is a probability distribution over some set Λ, and jA/B(.) are functions from

Λ to {0, . . . , dA/B − 1}. One might think of the λ parameters as hidden variables. If

the experimenter knew the exact value of the hidden variable, they could precisely tell

which physical state the system is in. However, due to some noise or other randomness

(in general, the incomplete knowledge of the experimenter), what the experimenter sees is

just a random mixture of definite states. Intuitively, we might think that all randomness

that we see in experiments is due to such incomplete knowledge, and that given a better

understanding of Nature, we would be able to eliminate all randomness, and predict all

experiments with certainty.

Given the full description of the physical states, measurements in the local realistic

paradigm simply read out the pre-defined properties of the state:

ĀxjA ⊗ B̄
y
jB

= |jA〉〈jA| ⊗ |jB〉〈jB|, jA = 0, . . . , dA − 1, jB = 0, . . . , dB − 1. (30)

That is, the outcome probabilities are deterministic:

p(jA)|j′A〉〈j
′
A| = δjA,j′A , (31)



30

where δa,b is the Kronecker delta.

Clearly, the experimenter might choose to locally post-process the outcome of these

measurements using potentially non-deterministic response functions

pA(a|x, jA) ≥ 0,
∑

a

pA(a|x, jA) = 1,

pB(b|y, jB) ≥ 0,
∑

b

pB(b|y, jB) = 1,
(32)

that map the original outcome “jA” (“jB”) to a new outcome “a” (“b”) with probability

pA(a|x, jA) [pB(b|y, jB)], depending on the measurement setting “x” (“y”). This gives rise

to the final measurements,

Axa =
∑

jA

pA(a|x, jA)ĀxjA =
∑

jA

pA(a|x, jA)|jA〉〈jA|

By
b =

∑

jB

pB(b|y, jB)B̄y
jB

=
∑

jB

pB(b|y, jB)|jB〉〈jB|.
(33)

Finally, the outcome distribution is given by

p(ab|xy)ρ = tr

[(∑

λ∈Λ

p(λ)|jA(λ)〉〈jA(λ)| ⊗ |jB(λ)〉〈jB(λ)|
)
·

(∑

jA

pA(a|x, jA)|jA〉〈jA| ⊗
∑

jB

pB(b|y, jB)|jB〉〈jB|
)]

= tr

[∑

λ∈Λ

∑

jA

∑

jB

p(λ) · pA(a|x, jA) · pB(b|y, jB) · δjA,jA(λ) · δjB ,jB(λ)·

|jA(λ)〉〈jA| ⊗ |jB(λ)〉〈jB|
]

=
∑

λ∈Λ

p(λ) · pA[a|x, jA(λ)] · pB[b|y, jB(λ)],

(34)

and therefore the statistics are of the form (27). This observation justifies the following

definition:

Definition II.14. Measurement outcome statistics on the Hilbert space HA ⊗ HB of the

form

p(ab|xy) =
∑

λ

p(λ) · pA(a|x, λ) · pB(b|y, λ) (35)

are called local realistic. Statistics that cannot be written in this form are usually referred

to as (Bell-)nonlocal.

Crucially, not all states on HA ⊗HB can be written in the form (26), and such states

can potentially lead to outcome distributions that are not local realistic. Indeed, it turns

out that some quantum outcome distributions are not local realistic, a phenomenon that
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does not occur in classical (non-quantum) theories [EPR35, Bel64]. This means that we

cannot think of states as having pre-defined local properties, and measurements as simply

reading out these properties. Another consequence is that some events (measurement

outcomes) are genuinely random, that is, even if the physical state is perfectly known, the

measurement outcome is impossible to predict with certainty. Therefore, whenever the

violation of local realism is certified, on might also certify genuine randomness.

Let us look at a well-known example of measurement outcome statistics that violate

local realism [CHSH69].

Proposition II.15. Consider the state ρ = |ψ〉〈ψ| on the Hilbert space C2 ⊗ C2, where

|ψ〉 =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) . (36)

Let us consider a pair of two-outcome POVMs A0 = {A0
+, A

0
−} and A1 = {A1

+, A
1
−} on

the first Hilbert space, and the pair B0 = {B0
+, B

0
−} and B1 = {B1

+, B
1
−} on the second

Hilbert space. For later convenience, we label the outcomes “+” and “-”, and introduce the

observables Ax = Ax+−Ax−(= 2Ax+− I) and By = By
+−By

−(= 2By
+− I), where x, y ∈ {0, 1}

label the measurement settings. Note that the observables fully specify the POVMs, and let

us pick the specific observables

A0 = X, A1 = Z, B0 =
X + Z√

2
, B1 =

X − Z√
2

, (37)

where

X =


0 1

1 0


 and Z =


1 0

0 −1


 (38)

are the Pauli X and Z matrices, written in the basis {|0〉, |1〉}. Then, the measurement

statistics

p(ab|xy)ρ = tr
[
|ψ〉〈ψ|

(
Axa ⊗By

b

)]
(39)

do not have a local realistic description.

Proof. Let us consider the following linear functional on the measurement statistics

β = 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ∈ R, (40)

where

〈AxBy〉 = tr[|ψ〉〈ψ|(Ax⊗By)] = p(+ + |xy)− p(+− |xy)− p(−+ |xy) + p(−− |xy) (41)
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is the expectation value of the observable Ax ⊗ By. Notice that for the state in Eq. (36),

we have that tr[|ψ〉〈ψ|(A ⊗ B)] = 1
2 tr(ATB), where (.)T is the transposition in the basis

{|0〉, |1〉}. It is also easy to verify that for the Pauli matricesX,Z it holds thatX2 = Z2 = I

and tr(XZ) = 0. Therefore, for the state (36) and the observables (37) we have that

〈A0B0〉 = 〈A0B1〉 = 〈A1B0〉 =
1√
2
, 〈A1B1〉 = − 1√

2
, (42)

and therefore the quantum value βQ of the expression (40) is βQ = 2
√

2.

Now I will show that in any local realistic model, we obtain that the local value βL

satisfies βL ≤ 2, and therefore the statistics in Eq. (42) cannot be described by any local

realistic model. First, from Definition II.14 it follows that any local realistic statistics can

be written as

βL =
∑

λ

p(λ)
[
〈A0B0〉λ + 〈A0B1〉λ + 〈A1B0〉λ − 〈A1B1〉λ

]
=:
∑

λ

p(λ) · βλL, (43)

where

〈AxBy〉λ = pA(+|x, λ) · pB(+|y, λ)− pA(+|x, λ) · pB(−|y, λ)

−pA(−|x, λ) · pB(+|y, λ) + pA(−|x, λ) · pB(−|y, λ),
(44)

since for a fixed λ, all probabilities factorise. Notice that if we aim at maximising βL, the

hidden variable λ is not necessary, because βL is linear in p(λ). For example, if we only

have two values of the hidden variable, λ1 and λ2 such that βλ1L ≥ βλ2L , then it is beneficial

to set p(λ1) = 1 and p(λ2) = 0. This argument trivially generalises to an arbitrary number

of possible values of the hidden variable, that is, we can always pick the value which gives

the highest value of βλL. Therefore, the optimal local realistic statistics can be written as

βL = 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 (45)

where

〈AxBy〉 = pA(+|x) · pB(+|y)− pA(+|x) · pB(−|y)

−pA(−|x) · pB(+|y) + pA(−|x) · pB(−|y).
(46)

Notice that this expression is linear in all the pA(a|x) and pB(b|y). Therefore, similarly to

the hidden variable argument, in the optimal strategy, deterministic distributions suffice,

that is,

pA(a|x) ∈ {0, 1} and pB(b|y) ∈ {0, 1}. (47)

Such statistics lead to 〈AxBy〉 = ax · by, where ax, by ∈ {1,−1}. From this, it is straight-

forward to verify that any local realistic statistics obey βL ≤ 2, and therefore the quantum

statistics in Proposition II.15 cannot be described by any local realistic model.
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The above expression, βL ≤ 2, is known as the CHSH inequality, named after Clauser,

Horne, Shimony and Holt [CHSH69]. Most notably, recent experiments confirm the viola-

tion of the CHSH inequality [HBD+15, GVW+15, SMSC+15], which is a solid proof that

Nature itself does not behave in a local realistic manner.

The CHSH inequality is an example of Bell inequalities:

Definition II.16. A Bell inequality is an inequality on a certain linear combination of

measurement outcome probabilities,

β =
∑

a,b,x,y

αabxy · p(ab|xy) ≤ βL, (48)

satisfied by every local realistic model, such that there exist quantum states and measure-

ments that violate this inequality, that is,

βQ > βL. (49)

Note that in order to violate local realism (i.e. to violate a Bell inequality), it is essential

to have multiple measurement settings for both parties A and B. To see this, assume that

B has only access to one measurement {Bb}, while A has a set of measurements {Axa}. Let
us define the quantities

p(b) = tr [ρ (I⊗Bb)] .

p(a|x, b) =





tr[ρ(Axa⊗Bb)]
p(b) if p(b) 6= 0

0 if p(b) = 0,

(50)

Then the outcome statistics for an arbitrary state ρ ∈ S(HA ⊗HB) can be written as

p(ab|xy)ρ = tr [ρ (Axa ⊗Bb)] = p(a|x, b) · p(b) =
∑

b′
p(b′) · p(a|x, b′) · δb,b′

=:
∑

b′
p(b′) · p(a|x, b′) · p(b|b′) =

∑

b′:p(b′)6=0

p(b′) · p(a|x, b′) · p(b|b′),
(51)

where we have defined p(b|b′) = δb,b′ , and all the objects appearing are well-defined condi-

tional probability distributions. Therefore, we might think of b′ as a hidden variable, and

we see that the above statistics admit a local realistic model.

From Eq. (27), it is also clear that another prerequisite for the violation of local realism is

that the state cannot be written in the form (26). Because of this fundamental importance,

this characterisation of quantum states is essential in quantum theory:

Definition II.17. A quantum state ρ on HA⊗HB is called separable, if it can be written

as

ρ =
∑

k

pk · ρkA ⊗ ρkB, pk ≥ 0,
∑

k

pk = 1, (52)
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for some quantum states ρkA and ρkB on HA and HB, respectively. Otherwise, it is called

entangled.

This definition naturally generalises to more than two Hilbert spaces: A quantum state

ρ on
⊗

j Hj is called (fully) separable, if it can be written as

ρ =
∑

k

pk
⊗

j

ρkj , pk ≥ 0,
∑

k

pk = 1, (53)

for some quantum states ρkj on Hj. Otherwise, it is called entangled.

Due to their importance, entangled states are studied in great detail, and apart from

the violation of local realism, they are useful for quantum teleportation, superdense coding,

quantum key distribution and many more tasks [HHHH09].

3. Mutually unbiased bases

In this section, I introduce a class of measurements with great information theoretical

relevance, which also forms a central object of interest for this thesis. Imagine that we have

access to two measurement devices with d outcomes each, that is, two POVMs {Aa}da=1

and {Bb}db=1 on a Hilbert space H. Assume that for some state |ψ〉 ∈ H, we obtain a

definite outcome, say “a”, of the measurement A:

p(a)ψ = 〈ψ|Aa|ψ〉 = 1. (54)

Also assume that in every such case, the outcome of the other measurement B is completely

random, that is,

〈ψ|Bb|ψ〉 =
1

d
∀b = 1, . . . , d. (55)

Finally, let us also assume the reverse relation:

〈ψ|Bb|ψ〉 = 1 =⇒ 〈ψ|Aa|ψ〉 =
1

d
∀a = 1, . . . , d. (56)

In words, the measurements A and B are such that if for some state |ψ〉 the outcome of one

of them is certain, then the outcome of the other one is completely random. A well-known

example of such measurements is called mutually unbiased bases:

Definition II.18. Let {|ψa〉}da=1 and {|ϕb〉}db=1 be two orthonormal bases on Cd. These

bases are called mutually unbiased if

|〈ψa|ϕb〉|2 =
1

d
∀a, b = 1, . . . , d. (57)
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Remark II.19. The rank-1 projective measurements {|ψa〉〈ψa|}da=1 and {|ϕb〉〈ϕb|}db=1 cor-

responding to mutually unbiased bases satisfy the relations

〈ξ|ψa〉〈ψa|ξ〉 = 1 =⇒ |ξ〉 = eiα|ψa〉 =⇒ 〈ξ|ϕb〉〈ϕb|ξ〉 = |〈ψa|ϕb〉|2 =
1

d
,

〈ξ|ϕb〉〈ϕb|ξ〉 = 1 =⇒ |ξ〉 = eiα|ϕb〉 =⇒ 〈ξ|ψa〉〈ψa|ξ〉 = |〈ψa|ϕb〉|2 =
1

d

(58)

for every a, b = 1, . . . , d.

Mutually unbiased bases (MUBs) have a wide range of applications in quantum in-

formation theory [DEBŻ10]. They are optimal for state determination [Iva81, WF89],

information locking [BW07] and the so-called mean king’s problem [Ara03]. They also

give rise to optimal entropic uncertainty relations [MU88], and are used in cryptographic

protocols [BB84]. The simplest example appears in Proposition II.15, which also shows

that MUBs are useful for violating Bell inequalities:

Example II.20. The eigenbases of the Pauli X and Z operators are mutually unbiased.

Since Z|0〉 = |0〉 and Z|1〉 = −|1〉, the eigenbasis of the Z operator is simply

{|0〉, |1〉}, (59)

whereas since X|0〉 = |1〉 and X|1〉 = |0〉, the eigenbasis of the X operator is
{

1√
2

(|0〉+ |1〉) , 1√
2

(|0〉 − |1〉)
}

=: {|+〉, |−〉} . (60)

It is straightforward to verify that

|〈0|+〉|2 = |〈0|−〉|2 = |〈1|+〉|2 = |〈1|−〉|2 =
1

2
, (61)

and therefore these bases are mutually unbiased.

Remark II.21. Note that the POVMs A0 and A1 in Proposition II.15 are

A0 = {|0〉〈0|, |1〉〈1|}, A1 = {|+〉〈+|, |−〉〈−|}. (62)

Example II.22. The above example can be generalised to arbitrary dimensions. Consider

the generalised Pauli operators in dimension d,

X =

d−1∑

j=0

|j + 1〉〈j| and Z =

d−1∑

j=0

ωj |j〉〈j|, (63)

where ωd = e
2πi
d . The eigenbases of these two operators are mutually unbiased.
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In every prime power dimension this construction can be further generalised, and the

eigenbases of the (similarly defined) operatorsX,Z,XZ,XZ2, . . . , XZd−1 form d+1 MUBs

(that is, d+ 1 bases that are pairwise mutually unbiased) [BBRV02]. In fact, this number

corresponds to the maximal possible number of MUBs in any given dimension d [WF89].

Therefore, the maximal number of MUBs in prime power dimensions is known exactly.

However, in any composite dimension d with prime decomposition d =
∏
j p

rj
j , it is only

known that the number of MUBs is at least minj{prjj }+ 1 (using the above construction).

For instance, in dimension 6 the number of MUBs is 3 ≤ #MUB ≤ 7, but the exact number

is unknown. Zauner conjectured in his 1991 master’s thesis [Zau91] that the maximal

number of MUBs in dimension 6 is 4, and the widespread belief is that this conjecture is

indeed true. However, the proof has been eluding the community since almost thirty years

now.
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B. Certification schemes

Using the formalism of the previous section, in this section I formally introduce different

certification schemes. I start with the strongest method of self-testing (also mentioned in

the introduction), then I introduce the more experimentally friendly setup of prepare-and-

measure scenarios and discuss how to lower bound the dimension of the physical system

using them. Then, I show how to certify the quantum nature of a prepare-and-measure

experiment, and how ideas from self-testing can be adapted to this scenario.

1. Self-testing

We have already seen in the previous sections that certain measurement outcome statis-

tics in nonlocal scenarios certify that the experiment is inherently of quantum nature, that

is, it does not have a local realistic description. It turns out that in some cases much

stronger statements can be drawn simply from the measurement outcome statistics. The

strongest such certification scheme is called self-testing. In self-testing, we consider a non-

local scenario on the Hilbert space HA ⊗ HB, where we will often refer to the parties as

Alice and Bob. We assume that there is no communication allowed between the parties

(no signalling), that they share some state ρ ∈ S(HA⊗HB), and that they have access to

local measurements {Axa} and {By
b } on HA and HB, respectively. The aim of self-testing

is to characterise the physical setup (i.e. the state and the measurements) up to the min-

imum freedom that is theoretically possible by only looking at the measurement outcome

statistics

p(ab|xy) = tr[ρ(Axa ⊗By
b )]. (64)

Such characterisations are usually referred to as device-independent (DI), because the ex-

perimenter treats their devices as black boxes, and the characterisation is made solely by

looking at the inputs and outputs of these boxes.

The minimum freedom for DI characterisation is defined by operations on the state

and the measurements that go unnoticed when we look only at the outcome statistics (64).

First, notice that we cannot make any claims on the measurements {Axa} and {By
b } outside

of the support of the marginal states ρA = trB ρ and ρB = trA ρ. Therefore, from now on

we assume that the marginal states are full-rank.

Also note that the outcome statistics in Eq. (64) do not change if we apply a local

isometry
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Definition II.23. An isometry on the Hilbert space H is a map V : H → H′, such that

V †V = I. That is, the mapping preserves all inner products,

〈V ψ|V ϕ〉 = 〈ψ|V †V |ϕ〉 = 〈ψ|ϕ〉 ∀|ψ〉, |ϕ〉 ∈ H. (65)

The action of the isometry V on operators A ∈ B(H) is defined as A 7→ V AV †, which

preserves the Hilbert–Schmidt inner product:

〈V AV †, V BV †〉HS = tr(V A†V †V BV †) = tr(A†B) = 〈A,B〉HS ∀A,B ∈ B(H). (66)

Definition II.24. A local isometry on the Hilbert space HA ⊗HB is a map V : HA ⊗
HB → HA′ ⊗HB′, such that

V = VA ⊗ VB, (67)

where VA and VB are isometries on HA and HB, respectively.

Indeed, for every local isometry it holds that

pV (ab|xy) = tr[V ρV †(VAA
x
aV
†
A)⊗ (VBB

y
bV
†
B)] = tr[ρ(Axa ⊗By

b )] = p(ab|xy), (68)

that is, applying a local isometry is undetectable from the outcome statistics.

Similarly, we cannot detect if an auxiliary state is appended to the system, on which

the measurements act trivially, that is,

pσ(ab|xy) = tr[(ρ⊗ σ)(Axa ⊗By
b ⊗ I)] = tr[ρ(Axa ⊗By

b )] = p(ab|xy) (69)

for every state σ ∈ S(HS) on some auxiliary Hilbert space HS .
Putting the above observations together, we are in a position to formally state what it

means to self-test states and measurements in a nonlocal scenario [MY98, MY04].

Definition II.25. The outcome statistics p(ab|xy) self-test the state ρ̃ ∈ S(HÃ ⊗ HB̃)

and the measurements {Ãxa} on HÃ and {B̃y
b } on HB̃ if for all states and measurements

ρ ∈ S(HA ⊗HB), {Axa} on HA and {By
b } on HB, such that

p(ab|xy) = tr[ρ(Axa ⊗By
b )], (70)

there exists a local isometry V = VA⊗ VB : HA⊗HB → (HÃ⊗HB̃)⊗ (HA′ ⊗HB′), where
VA : HA → HÃ ⊗HA′ and VB : HB → HB̃ ⊗HB′ , such that

V ρV † = ρ̃⊗ σ

VAA
x
aV
†
A = Ãxa ⊗ IA′ ∀x, a

VBB
y
bV
†
B = B̃y

b ⊗ IB′ ∀y, b

(71)

for some σ ∈ S(HA′ ⊗HB′).
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That is, upon observing p(ab|xy), the experimenter can be certain that there exists

a local isometry mapping the physical realisation ρ, {Axa}, {By
b } to the desired state and

measurements ρ̃, {Ãxa}, {B̃y
b }. More specifically, the local isometry maps the physical re-

alisation on HA ⊗ HB to the tensor product of the relevant Hilbert space HÃ ⊗ HB̃ and

some “junk” Hilbert space HA′ ⊗HB′ . The relevant Hilbert space contains the state and

the measurements to be self-tested, whereas the junk Hilbert space contains an arbitrary

state on which the measurements act trivially. Notice that if the parties A and B know

the precise form of the isometries VA and VB, they can locally extract the state ρ̃ and the

measurements {Ãxa} and {B̃y
b } by applying the isometries. It is also worth noting that in

general scenarios it is not known what is the largest class of operations that preserve all

outcome distributions. For example, a complex conjugation leading to ρ∗, {(Axa)∗} and

{(By
b )∗} also preserves p(ab|xy), but in general this cannot be written as a local isome-

try. Similar observations lead to slightly different definitions of self-testing; for a recent

comprehensive review see Ref. [ŠB19].

As an example, let us take another look at the CHSH inequality in Proposition II.15. We

have already seen that whenever the Bell value β in Eq. (40) exceeds 2, then the experiment

violates local realism. In addition to this, it turns out that the optimal Bell violation self-

tests the state and the measurements from Proposition II.15 [Tsi87, SW87, PR92].

Proposition II.26. The maximal violation of the CHSH inequality, β = 2
√

2, self-tests

the state

|ψ̃〉 =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) , (72)

and the measurements corresponding to the eigenbases of the observables

Ã0 = X, Ã1 = Z, B̃0 =
X + Z√

2
, B̃1 =

X − Z√
2

. (73)

That is, upon observing the maximal violation of the CHSH inequality, the experi-

menter can be certain that there exists a local isometry extracting the above state and

measurements from the actual physically implemented setup. For the case of the CHSH

inequality, this isometry is in fact constructed from the physically implemented measure-

ments and therefore can be straightforwardly performed in the laboratory to extract the

desired state and measurements.

While self-testing statements like the one above are incredibly powerful, the formulation

in Definition II.25 has little relevance to actual experiments, because one never observes

perfect outcome statistics in the laboratory. In fact, one never even observes any exact
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statistics, due to the fact that in practice only a finite number of experimental rounds can be

performed, leading only to an approximation of the actual statistics. In order to overcome

these limitations, the concept of robust self-testing has been extensively studied [BLM+09,

MYS12, YVB+14, BNS+15]. Robust self-testing statements allow for an approximate

characterisation of the state and the measurements for the case of imperfect statistics, and

can be applied to experiments [TWE+17].

While there are plenty of possible approximate characterisation schemes for states and

measurements (see Ref. [ŠB19]), let me present one example of a robust characterisation

of measurements using the CHSH inequality [Kan17].

Proposition II.27. For the observed violation of the CHSH inequality, β, it holds that

β ≤ 2
√

1 + t, (74)

where t := 1
2 tr

(∣∣[A0, A1]
∣∣ ρA

)
∈ [0, 1] is the effective commutator, |A| =

√
A†A is the

operator absolute value and [A0, A1] = A0A1 −A1A0 is the commutator.

Note that the effective commutator is a relevant characterisation of Alice’s measure-

ments in nonlocal scenarios. It is invariant under local isometries, and it only makes

statements about the measurements on the support of the marginal state. Moreover, for

the ideal case, β = 2
√

2, it is equivalent to the self-testing statement in Proposition II.26,

and it gives a non-trivial statement for any violation of local realism, that is, for any β > 2.

Robust self-testing statements open up the possibility of real world applications. Since

these statements provide experimentally verifiable DI characterisations of states and mea-

surements, it is natural to propose certification schemes for quantum information process-

ing tasks based on self-testing. Accordingly, self-testing statements have been linked to

device-independent randomness generation, quantum key distribution, entanglement de-

tection and delegated quantum computing; for a thorough account, see Ref. [ŠB19].

Self-testing is an active field of research with many potential applications, however,

there are a few drawbacks associated with it. Firstly, as discussed in section IIA 2, in

order to violate a Bell inequality, entangled states are necessary. This makes it difficult to

implement self-testing protocols experimentally, as the preparation of entangled states is

rather challenging, especially in high dimensions. Secondly, in high-dimensional settings

deriving theoretical results is also a big challenge, partially due to the fact that the set

of operations preserving all outcome distributions is unknown. Accordingly, there are

only a few self-testing results in high dimensions that are not extensions of qubit results

[KŠT+19, SSKA19]. This challenge is important and timely, as with current technology
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experimenters can already prepare and manipulate higher dimensional quantum systems

with high precision [DLB+11, FLP+12, MMZ16]. Lastly, the formulation of self-testing in

Definition II.25 aims at characterising the state and the measurements up to the minimal

theoretically allowed freedom. While this is particularly elegant for the theory, in practice

the experimenter might just want to certify some relevant property of their setup.

Therefore, in the remainder of this section I will describe relaxations of the rigid self-

testing scenarios. I introduce the prepare-and-measure scenario that does not require

preparing entangled states, and is therefore easier to implement experimentally. I will

discuss how to bound the dimension of the physical system and certify the quantum nature

of the experiment in this setup. Then I will discuss how to adapt the notion of self-testing

to prepare-and-measure scenarios.

2. Prepare-and-measure scenario

Consider again the laboratories of Alice and Bob. As in the nonlocal scenario, assume

that they have some settings, x and y, respectively. In the prepare-and-measure scenario,

however, they do not share any physical state. Instead, Alice uses her setting x to prepare

the quantum state ρx, which then she sends to Bob. Then Bob, according to his setting y,

performs a measurement {By
b } and announces his outcome b. The experiment is described

by the outcome statistics, which in this case is written as

p(b|xy) = tr(ρxB
y
b ). (75)

Our assumption is that there is no additional communication allowed between Alice and

Bob, apart from the state ρx.

Notice that since the set of d-dimensional quantum states can be embedded in the set of

(d+ 1)-dimensional quantum states, there is in principle a larger set of outcome statistics

achievable with higher dimensional states. That is, if for fixed numbers of settings |X| and
|Y | we denote the set of achievable outcome distributions in dimension d by P |X|,|Y |d , then

we have that P |X|,|Y |d ⊆ P |X|,|Y |d+1 . This observation leads to the idea of dimension witnesses

[GBHA10].

Definition II.28. An inequality on a certain linear combination of outcome probabilities

β =
∑

bxy

αbxy · p(b|xy) ≤ Qd (76)

is a dimension witness if for every set of states and measurements ρx, {By
b } such that
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ρx ∈ S(Cd) and By
b ∈ B(Cd) we have that β ≤ Qd, whereas for some ρx ∈ S(Cd+1) and

By
b ∈ B(Cd+1) we have that β > Qd.

That is, violating a dimension witness for dimension d certifies that the employed quan-

tum states and measurements are of dimension at least d + 1. To illustrate the concept,

let me introduce probably the simplest example, using only one measurement setting.

Proposition II.29. Consider the following “compression” task: Alice has the setting x =

0, 1, 2, based on which she prepares the state ρx ∈ S(Cd), which she sends to Bob. Bob

has a single measurement, {Bb}2b=0, and his task is to guess Alice’s input x. The average

success probability

p̄ =
1

3

2∑

x=0

p(b = x|x) ≤ Q2 (77)

is a dimension witness for d = 2 with maximal quantum values Q2 = 2
3 and Q3 = 1.

In order to prove the above proposition, we will make use of the notion of the operator

norm:

Definition II.30. The operator norm of the operator A ∈ B(H) is defined as

||A|| = sup
{√
〈Aψ|Aψ〉 , |ψ〉 ∈ H, 〈ψ|ψ〉 = 1

}
, (78)

For Hermitian operators, this definition is equivalent to

||A|| = sup {|〈ψ|A|ψ〉| , |ψ〉 ∈ H, 〈ψ|ψ〉 = 1} . (79)

Now let us turn to the proof of the above proposition.

Proof. From the above definition, it immediately follows that p(b = x|x) = tr(ρxBx) ≤
||Bx|| ≤ trBx, and we get equality if ρx is the eigenstate of Bx corresponding to its largest

eigenvalue, and if ||Bx|| = trBx (i.e. the rank of Bx is 1). Therefore, the average success

probability for 2-dimensional systems is bounded by

p̄ =
1

3

2∑

x=0

tr(ρxBx) ≤ 1

3

2∑

x=0

||Bx|| ≤
1

3

2∑

x=0

trBx =
1

3
tr

(
2∑

x=0

Bx

)
=

1

3
tr I2 =

2

3
. (80)

This bound is saturated e.g. for the strategy

ρ0 = |0〉〈0|, ρ1 = ρ2 = |1〉〈1|,

B0 = |0〉〈0|, B1 = |1〉〈1|, B2 = 0,
(81)

which simply corresponds to encoding x = 1 and 2 in the same manner, at the cost of

never winning when x = 2, but winning all the other cases.
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On the other hand, for 3-dimensional systems we obtain p̄ = 1 with the strategy

ρ0 = |0〉〈0|, ρ1 = |1〉〈1|, ρ2 = |2〉〈2|

B0 = |0〉〈0|, B1 = |1〉〈1|, B2 = |2〉〈2|.
(82)

This is simply the manifestation of the fact that in a 3-dimensional state space Alice is

able to encode 3 perfectly distinguishable messages (while in a 2-dimensional space she

cannot).

Therefore, if in the above task the experimenters observe an average success probability

larger than 2/3, they can be certain that the dimension of the system is at least 3. Notice

that in the above scenario, quantum and classical strategies achieve the same average suc-

cess probability, since the optimal strategies are classical. However, in general, dimension

witnesses can also be used to certify the quantum nature of some experiment. If we fix the

dimension d, we can also pose a classical version of the inequality in Eq. (76),

β =
∑

b,x,y

αbxy · p(b|xy) ≤ Cd, (83)

where Cd is the maximum value of β achievable by d-dimensional classical states and

measurements, in the sense of Definition II.11 and Eq. (33). Since the set of d-dimensional

quantum states and measurements is strictly larger than the set of d-dimensional classical

states and measurements, in theory it is possible to violate the inequality (83) by employing

d-dimensional quantum states and measurements. Therefore, whenever some outcome

statistics violate the inequality (83), the experimenter can be certain that the experiment

does not have a classical description, under the assumption that the dimension does not

exceed d. Let me present a simple example of such a witness, that constitutes a central

object of interest of this thesis.

Example II.31. A “ 2d → 1” quantum random access code (QRAC) is a prepare-

and-measure scenario parametrised by an integer d ≥ 2, referring to the dimension of the

employed quantum system (see also Fig. 1). Alice’s settings are denoted by x = x1x2, where

x1, x2 ∈ {1, . . . , d} =: [d]. According to this setting, she prepares a state ρx1x2 ∈ S(Cd),

which she sends to Bob. Bob has the setting y ∈ {1, 2}, according to which he performs the

measurement {By
b }db=1. Bob’s aim is to guess Alice’s setting xy. As the figure of merit, we

employ the average success probability (ASP):

p̄ =
1

2d2

d∑

x1,x2=1

2∑

y=1

p(b = xy|x1, x2, y) =
1

2d2

d∑

x1,x2=1

2∑

y=1

tr(ρx1x2B
y
xy). (84)
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FIG. 1: A 2d → 1 quantum random access code.

QRACs can also be seen as compression tasks, where Alice attempts to compress two

classical dits (d-level systems) into one qudit, but this time Bob only tries to recover one of

them (although Alice does not know in advance which one). As we will see in the following,

quantum strategies provide an advantage in QRACs, and due to this, QRACs constitute

a basic building block in many quantum information processing protocols; see e.g. [Ozo09]

for a thorough account on their applications. As an example, I show that the simplest

version of this task, corresponding to d = 2, provides a witness of quantumness:

Proposition II.32. The 22 → 1 QRAC serves as a quantumness witness, as its classical

ASP is bounded by

p̄C ≤
3

4
= 0.75, (85)

whereas quantum strategies can achieve

p̄Q =
1

2

(
1 +

1√
2

)
≈ 0.8536. (86)

Proof. For the sake of this example, let us denote the settings and outcomes by x0, x1, y, b ∈
{0, 1}. Since the ASP in Eq. (84) is linear in both the state preparations and the measure-

ments, it is sufficient to consider extremal states and measurements. For the classical case,

this means that we fix a basis {|0〉, |1〉} on C2, and each state is a pure state ρx = |0〉〈0|
or |1〉〈1| (i.e. the distribution pj in Definition II.11 is deterministic). Moreover, every

measurement {By
0 , B

y
1} is one of the possibilities

{|0〉〈0|, |1〉〈1|}, {|1〉〈1|, |0〉〈0|}, {I, 0}, {0, I} (87)
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(i.e. the distributions p(b|y, j) in Eq. (33) are deterministic). This gives rise to finitely

many possible extremal strategies, and it is straightforward to verify that p̄C ≤ 3
4 . This

bound is achieved e.g. by the strategy

ρx1x2 = |x1〉〈x1|, By
b = |b〉〈b|, (88)

i.e. simply sending the first bit of Alice’s setting, which Bob reads out. Therefore, whenever

y = 1, they win with probability 1, and whenever y = 2, they win with probability 1
2 ,

resulting in the overall ASP p̄C = 3
4 .

For the quantum value, consider the measurements corresponding to qubit MUBs,

B0
0 = |0〉〈0|, B0

1 = |1〉〈1|,

B1
0 = |+〉〈+|, B1

1 = |−〉〈−|
(89)

and the states ρx0x1 projecting onto the eigenvector corresponding to the largest eigenvalue

of (B0
x0 +B1

x1). This gives rise to

p̄ =
1

8

1∑

x0,x1=0

tr
[
ρx0x1(B0

x0 +B1
x1)
]

=
1

8

1∑

x0,x1=0

∣∣∣∣B0
x0 +B1

x1

∣∣∣∣

=
1

8

(∣∣∣
∣∣∣|0〉〈0|+ |+〉〈+|

∣∣∣
∣∣∣+
∣∣∣
∣∣∣|0〉〈0|+ |−〉〈−|

∣∣∣
∣∣∣+
∣∣∣
∣∣∣|1〉〈1|+ |+〉〈+|

∣∣∣
∣∣∣+
∣∣∣
∣∣∣|1〉〈1|+ |−〉〈−|

∣∣∣
∣∣∣
)

=
1

8
· 4
(

1 +
1√
2

)
=

1

2

(
1 +

1√
2

)
.

(90)

Therefore, if the experimenters observe a 22 → 1 QRAC success probability p̄ > 3
4 ,

they can be certain that the systems are of quantum nature, given that the dimension is

restricted to 2.

Note that in order to make any non-trivial statement about the physical setup in the

prepare-and-measure scenario, it is essential to assume an upper bound on the dimension

(or have some alternative assumption, see e.g. [CBB15, VHWC+17, BME+17]). Indeed, if

x = 1, . . . , |X| and Alice is allowed to send any state of dimension |X|, then she might just

send one of |X| orthogonal states, which Bob is able to distinguish perfectly. This way,

Bob knows exactly the setting of Alice, and they are able to reproduce every probability

distribution p(b|xy). This strategy works in both the quantum and the classical regime,

and therefore in this case it is impossible to deduce that the experiment is of genuine

quantum nature. Therefore, it is a usual assumption in prepare-and-measure scenarios to

restrict the dimension to some fixed d < |X|, an assumption sometimes referred to as the

semi-device-independent (SDI) assumption.
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The advantage of the SDI paradigm is that it is much easier to implement experimentally

than DI tasks, and it also facilitates the derivation of theoretical results. Accordingly, the

SDI assumptions are used in many quantum cryptographic protocols [PB11, LPY+12,

LBL+15]. SDI statements provide highly practical certification schemes, however, their

potential is still not fully exploited. Note that in some scenarios, simply certifying the

quantum nature of an experiment might not be completely satisfactory. Imagine that

we are promised that the dimension of the quantum system is 4. However, also imagine

that this 4 dimensional system is composed of the following prepare-and-measure scenario:

Alice prepares a qubit, and sends it to Bob, who measures it and notes down his outcome.

Then, Alice prepares another qubit, sends it again to Bob, who measures it, and his second

outcome together with the first one consists his final outcome. This experiment can be

written as a prepare-and-measure scenario in dimension 4, however ideally we would like to

distinguish these kind of experiments from those in which Alice prepares a 4-dimensional

state, sends it to Bob, who measures it and produces his outcome at once, as this latter

scenario is clearly more general. Therefore, we might be able to devise a kind of refined

dimension witness, which for d = 4 would read

β =
∑

b,x,y

αbxy · p(b|xy) ≤ Q2⊗2, (91)

where Q2⊗2 is the maximal attainable value of β with a sequential qubit strategy (math-

ematically, using two separable qubits and two separable measurements). These type of

refined dimension witnesses are precisely what we study with my collaborators in Ref. [A],

and I will discuss the results in section IIIA.

Furthermore, we might want to fully characterise the physical setup under the SDI

assumptions. That is, we want to characterise the states ρx and the measurements {By
b }

by only looking at the outcome statistics p(b|xy), assuming the dimension d. Compared

to the nonlocal scenarios, in the prepare-and-measure scenario we do not allow for extra

degrees of freedom, and there is no tensor product structure on the Hilbert space. There-

fore, the natural class of operations preserving all outcome statistics is simply unitary

transformations, since

pU (b|xy) = tr(UρxU
†UBy

bU
†) = tr(ρxB

y
b ) = p(b|xy), (92)

whenever U is a unitary operator. Therefore, the following definition is a natural adapta-

tion of self-testing for the prepare-and-measure scenario [TKV+18]:
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Definition II.33. The outcome statistics p(b|xy) self-test the states ρ̃x and the mea-

surements {B̃y
b } on Cd in the prepare-and-measure scenario, if for all states ρx and

measurements {By
b } on Cd satisfying

p(b|xy) = tr(ρxB
y
b ) (93)

there exists a unitary U on Cd such that

UρxU
† = ρ̃x ∀x,

UBy
bU
† = B̃y

b ∀y, b.
(94)

Again, notice that in general unitaries are not the largest class of operations preserving

all outcome statistics (for example, complex conjugation preserves the statistics in this

scenario as well). Also notice that robust versions of this definition need to be introduced

in order to make the statements experimentally relevant (which has also been studied in

Ref. [TKV+18]).

While such self-testing statements in the prepare-and-measure scenario are both easy

to implement experimentally and provide the theoretically most precise characterisation,

they might not always be practical. In some scenarios, the experimenter might only be

interested in certifying some relevant properties of the setup, allowing for more freedom

than a unitary operation. Moreover, techniques for higher dimensional settings need to be

developed in order to harness the full potential of currently available technologies. These

are precisely the problems that we tackle with my collaborator in Ref. [B], and I will discuss

the results in section III B.
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C. Incompatible measurements

One particularly relevant property of sets of measurements in quantum information

theory is that of joint measurability, or compatibility. For the sake of simplicity, I will

focus on the compatibility of pairs of measurements, but this notion can be straight-

forwardly generalised to larger sets. This truly quantum phenomenon may occur when

we have access to only a single copy of a physical state ρ. Imagine that we are inter-

ested in simultaneously measuring two distinct properties of this state, corresponding to

the POVMs {Aa}nAa=1 and {Bb}nBb=1, which individually give rise to the outcome distri-

butions {pA(a)ρ}nAa=1 = {tr(ρAa)}nAa=1 and {pB(b)ρ}nBb=1 = {tr(ρBb)}nBb=1. In other words,

we would like to draw a variable from a joint distribution of the two measurements,

{p(ab)ρ}nA,nBa=1,b=1, that is, from a probability distribution such that
∑

b p(ab)ρ = pA(a)ρ

and
∑

a p(ab)ρ = pB(b)ρ for all a, b, ρ. In quantum theory, surprisingly, there exist pairs of

measurements such that it is impossible to obtain this joint distribution by measuring a

single copy of the state. Such measurements are called not jointly measurable or sometimes

incompatible. In order to grasp the phenomenon of incompatibility, let me start with the

definition of compatible measurements, which follows rather straightforwardly from the

above considerations [Lud54, BLPY16]:

Definition II.34. Two POVMs, {Aa}nAa=1 and {Bb}nBb=1 on the Hilbert space Cd are

called jointly measurable or compatible if there exists a so-called parent POVM

{Gab}nA,nBa=1,b=1 on Cd such that

nB∑

b=1

Gab = Aa ∀a,

nA∑

a=1

Gab = Bb ∀b.
(95)

Otherwise, they are called not jointly measurable or incompatible.

This definition captures the possibility of drawing a variable from the joint distribution

of p(a)ρ and p(b)ρ, via the measurement {Gab}. Indeed, we get that
nB∑

b=1

pG(ab)ρ =

nB∑

b=1

tr(ρGab) = tr

(
ρ

nB∑

b=1

Gab

)
= tr(ρAa) = pA(a)ρ ∀a,

nA∑

a=1

pG(ab)ρ =

nA∑

a=1

tr(ρGab) = tr

(
ρ

nA∑

a=1

Gab

)
= tr(ρBb) = pB(b)ρ ∀b.

(96)

In the following, we will denote the set of compatible (jointly measurable) POVM pairs in

dimension d with outcome numbers nA and nB by JMnA,nB
d , and all such POVM pairs by

POVMnA,nB
d .
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To give a better idea on compatible and incompatible measurements, let me provide

examples for both of them.

Example II.35. A pair of commuting measurements, {Aa}nAa=1 and {Bb}nBb=1 such that

[Aa, Bb] = AaBb −BbAa = 0 ∀a, b (97)

is jointly measurable with the parent POVM

Gab = AaBb, (98)

which is positive in this case, as AaBb = A
1/2
a BbA

1/2
a . For example, the trivial “coin toss”

measurements
{

I
nA

}nA

a=1

and
{

I
nB

}nB

b=1

(99)

are jointly measurable with the parent POVM

Gab =
I

nAnB
. (100)

Note that for the case of projective measurements the above example provides a com-

plete characterisation of compatible measurements [HRS08]:

Proposition II.36. For the case of projective measurements, commutation and joint mea-

surability are equivalent.

This observation provides the opportunity to give an example of incompatible measure-

ments.

Example II.37. A pair of MUB measurements, {|ψa〉〈ψa|}da=1 and {|ϕb〉〈ϕb|}db=1 in di-

mension d are incompatible, because they are projective and
[
|ψa〉〈ψa|, |ϕb〉〈ϕb|

]
|ψa′〉 = 〈ψa|ϕb〉〈ϕb|ψa′〉|ψa〉 − 〈ϕb|ψa〉〈ψa|ψa′〉|ϕb〉

= 〈ψa|ϕb〉〈ϕb|ψa′〉|ψa〉 6= 0
(101)

for a 6= a′, that is, they do not commute.

The definition of incompatibility in Definition II.34 turns out to be equivalent to the

following, operationally more transparent definition [HMZ16]:

Definition II.38. Two POVMs, {Aa}nAa=1 and {Bb}nBb=1 on the Hilbert space Cd are com-

patible if and only if there exists a parent POVM {Gg}nGg=1 and post-processings pA(.|g) and

pB(.|g) such that
∑

g

pA(a|g)Gg = Aa ∀a,

∑

g

pB(b|g)Gg = Bb ∀b.
(102)
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This equivalent definition captures that instead of measuring both {Aa} and {Bb} to

obtain the distributions p(a)ρ and p(b)ρ, one only needs to measure {Gg} to obtain the

distribution p(g)ρ, from which both p(a)ρ and p(b)ρ can be recovered via post-processing.

This latter definition also makes it apparent that classical measurements in the sense of

Eq. (33) are always compatible.

Furthermore, Definition II.38 makes it straightforward to argue for another classical fea-

ture of compatible measurements, namely that it is impossible to violate any Bell inequality

if one of the parties has access only to compatible measurements [WPGF09]:

Proposition II.39. In a nonlocal scenario, if one of the parties has access only to com-

patible measurements, then the resulting outcome statistics are local realistic.

Proof. Without loss of generality, we can assume that the measurements of Bob, {By
b },

are compatible. That is, extending Definition II.38 to more than two measurements, there

exists a parent POVM {Gg} and post-processings p(.|y, g) such that

By
b =

∑

g

p(b|y, g)Gg ∀y, b. (103)

The outcome statistics of the experiment can then be written as

p(ab|xy) = tr[ρ(Axa ⊗By
b )] = tr

[
ρ

(
Axa ⊗

∑

g

p(b|y, g)Gg

)]
=
∑

g

p(b|y, g) tr[ρ(Axa ⊗Gg)].

(104)

Let us now define the quantities

p(g) = tr [ρ (I⊗Gg)] .

p(a|x, g) =





tr[ρ(Axa⊗Gg)]
p(g) if p(g) 6= 0

0 if p(g) = 0,

(105)

Using these, the outcome statistics read

p(ab|xy) =
∑

g

p(g) · p(a|x, g) · p(b|y, g) =
∑

g:p(g) 6=0

p(g) · p(a|x, g) · p(b|y, g), (106)

which is a well-defined local realistic model.

Note that the argument essentially boils down to observing that if Bob’s measurements

are compatible, then his measurements can be simulated with just one setting correspond-

ing to the parent measurement {Gg}. Then, for the case of one setting we have already

seen in section IIA 2 that any statistics have a local realistic description.
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Apart from Bell nonlocality, incompatible measurements turn out to be useful in

Einstein–Podolsky–Rosen steering [QVB14, UBGP15] and a particular class of state dis-

crimination tasks [CHT19]. For this reason, it is desirable to go beyond the dichotomic

characterisation of compatible/incompatible measurements, and devise measures that

quantify to what extent a pair of measurements is incompatible [HMZ16]. Such measures

then characterise the usefulness of measurement pairs in the above mentioned tasks.

One natural class of these quantifiers is measures based on robustness to noise. Imagine

that we are given a pair of incompatible POVMs {Aa}nAa=1 and {Bb}nBb=1. Let us assume

that due to some experimental imperfections, the actually implemented measurements are

noisy versions of the original POVMs, that is, POVMs with elements

Aηa = ηAa + (1− η)
I
nA

,

Bη
b = ηBb + (1− η)

I
nB

,

(107)

or, alternatively,

(Aη, Bη) = η · (A,B) + (1− η) ·
(

I
nA

,
I
nB

)
, (108)

adopting the notation A = {Aa}nAa=1, where η ∈ [0, 1] is the visibility of the measurements.

Clearly, we have that for η = 1, the measurements {Aηa} and {Bη
b } are incompatible, and

also that for η = 0 they are compatible. It is then apparent that there exists a critical

visibility, η∗, at which the measurements become compatible. This critical visibility is a

robustness measure of incompatibility, as it quantifies the amount of noise that needs to

be added to the measurements to become compatible.

Note that in the above example, we have assumed that the noise takes the form of

the trivial POVMs, {I/nA} and {I/nB}. However, we might assume different models of

noise. In full generality, we can assign any subset of the set POVMnA,nB
d to be our noise

model for the original POVM pair (A,B). Let us consider some subset NA,B, such that it

contains at least one compatible pair. Then, the following notion is well-defined, and it is

a meaningful robustness measure of incompatibility [C]:

Definition II.40. Given two POVMs, {Aa}nAa=1 and {Bb}nBb=1 on Cd, and a correspond-

ing noise set, NA,B ⊆ POVMnA,nB
d such that NA,B ∩JMnA,nB

d 6= ∅, we say that the

incompatibility robustness η∗A,B of the pair (A,B) with respect to this noise model is

η∗A,B = sup
η∈[0,1]

(M,N)∈NA,B

{
η
∣∣∣ η · (A,B) + (1− η) · (M,N) ∈ JMnA,nB

d

}
. (109)
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Note that if the noise set contains more than one pair, then we also need to optimise

over this set. In other words, we have to find the noise pair (M,N) of which we need to

add the least amount to (A,B) in order to make them compatible.

These measures are not only meaningful quantifiers of incompatibility, but are also

relevant for experiments: They provide an error threshold for the experimenter on the

amount of noise that their measurements can tolerate under a given noise model before

becoming compatible, and therefore useless for certain quantum information protocols.

Accordingly, several special cases of these measures have been studied in the literature,

corresponding to different noise models [HMZ16, CS16]. However, despite the significant

effort from the quantum information community focused on studying these measures, their

properties and the relations between the different measures are still not well-understood.

Moreover, the natural question whether there exists a single most-incompatible pair of

measurements in a given dimension also remains unanswered. In order to fill these gaps in

our general understanding of robustness based measures of incompatibility, together with

my collaborators I study these measures, their properties and relations, and tackle the

question of the most incompatible measurement pair in our work [C], the results of which

I will discuss in section III C.
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III. RESULTS

In this section, I discuss the results of the works [A], [B], [C], attached to this thesis.

For each of these works, I summarise the state of the art at the time of writing the articles,

the main results of the articles and the main technical details. For more details, please

refer to the attached papers in part II.

A. Certifying an irreducible 1024-dimensional photonic state using refined

dimension witnesses

1. State of the art and results

At the time of writing the article [A], it was already known that 2d → 1 QRACs (see

Example II.31) serve as quantumness witnesses. Specifically, it was shown in Refs. [AKR15,

CSTP18] that in dimension d the maximal classical ASP is

p̄ ≤ p̄C =
1

2

(
1 +

1

d

)
, (110)

and Ref. [THMB15] provided explicit quantum strategies employing MUB measurements

reaching

p̄Q =
1

2

(
1 +

1√
d

)
> p̄C . (111)

Therefore, under the assumption that the employed states and measurements in a 2d → 1

QRAC are d-dimensional, if the experimenter observes an ASP larger than the value in

Eq. (110), they can be certain that the experiment is of quantum nature.

However, the natural question arises: as discussed in section II B 2, it is reasonable to

assume that a d-dimensional strategy that consists of lower dimensional sequential strate-

gies will violate the inequality (110), but will not reach the value (111). That is, simply

certifying the quantum nature of the experiment does not necessarily give a faithful charac-

terisation of it. In large dimensions this becomes a crucial distinction, as one would ideally

like to be able to differentiate, say, 10 qubits prepared sequentially (therefore their joint

state is separable) from a full 1024-dimensional quantum state (that one might think of,

mathematically, as 10 entangled qubits). The question is then: can we devise a certification

method to distinguish these fundamentally different scenarios?

In our work [A], we answer this question positively, using the 2d → 1 QRAC. Let us

assume that the dimension d factorises as

d = d1 · d2 · . . . · dr, dk ∈ N, dk ≥ 2, (112)
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and accordingly, the states prepared by Alice and the measurements of Bob also factorise

as

ρx = ρ1
x ⊗ ρ2

x ⊗ · · · ⊗ ρrx,

My
b = (My

b1
)1 ⊗ (My

b2
)2 ⊗ · · · ⊗ (My

br)
r,

(113)

where ρkx is a dk-dimensional state and (My
bk

)k is a POVM on Cdk . We call such a con-

struction a product structure, and we call it non-trivial if r ≥ 2. Note that in principle we

can also allow for convex combinations of states and measurements like the ones above,

but due to the linearity of the ASP, these are not necessary when optimising the ASP. Also

note that mathematically this formulation is equivalent to studying entanglement struc-

tures, however, in the prepare-and-measure scenario there is normally no natural tensor

product structure, as we think of the systems as single d-dimensional entities. Therefore,

we restrain from the terminology “entanglement”, and refer to states and measurements

that cannot be written in a non-trivial product form as irreducible. Our aim is then to

certify irreducible d-dimensional states and measurements.

We achieve this certification by providing tight bounds on the achievable ASP for states

and measurements of the form (113). In particular, these bounds are different for different

product structures. Therefore, 2d → 1 QRACs allow for certifying that the states and

measurements are irreducible, if all the ASP bounds corresponding to non-trivial product

structures are violated.

In order to demonstrate the applicability of our methods, we worked together with an

experimental team to show that these techniques allow for certifying irreducible states

and measurements of dimension 1024. The experiment performs a 21024 → 1 QRAC using

spatial degrees of freedom of a single photon. The observed ASP violates the bound for the

highest non-trivial product structure, d = 512 · 2, by more than one standard deviation,

and therefore it certifies that the employed states and measurements are of irreducible

dimension 1024.

2. Technical details

Our main technical tool that allows us to analyse the performance of non-trivial product

structures is to show that in an optimal implementation of the QRAC game, the parties

effectively play r parallel instances of the game, in dimensions d1, d2, . . . , and dr, respec-

tively (see Fig. 2). Accordingly, they win the full d-dimensional game if they win all the r

sub-games. In order to reach this conclusion, first notice that the most general strategy of
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(a) (b)

FIG. 2: (a) A generic QRAC with a product structure. (b) The optimal ASP can be achieved by

playing r parallel QRACs, following from Lemma III.1.

Alice and Bob is in fact slightly more general than the formulation of Eq. (113) suggests. In

principle, Bob might employ a so-called sequential adaptive strategy. Note that without loss

of generality, we can assume that he applies his measurements (My
b1

)1, (My
b2

)2, . . . , (My
br)

r

in a sequential fashion, since these measurements act on different systems. Then, later

measurements might depend on the outcomes of former ones, i.e. Bob’s measurements can

in general be written as

My
b = (My

b1
)1 ⊗ (My,b1

b2
)2 ⊗ · · · ⊗ (My,b1,b2,...,br−1

br )r. (114)

The idea behind sequential adaptive strategies is that Bob adapts his measurements while

obtaining the outcomes, therefore introducing classical correlations between the different

subsystems and potentially gaining on the ASP. However, we show that these kind of

strategies are not necessary.

Lemma III.1. In a 2d → 1 QRAC with non-trivial product structure, sequential adaptive

strategies are not necessary to reach the optimal ASP.

Proof. See Ref. [A].

What this result implies is that the optimal strategy of Alice and Bob is that they play

individual QRACs on each of the r subsystems, in parallel. This is achieved by splitting

up Alice’s classical inputs according to the product structure, that is, xy = x1
yx

2
y . . . x

r
y,

where xky ∈ {1, . . . , dk} and y ∈ {1, 2}. Alice then encodes xk1 and xk2 into ρk
xk1x

k
2
and sends

it to Bob. Bob measures (My
bk

)k, and announces his outcome bk. The final outcome is then

b = b1b2 . . . br, and they win the round if b = xy, that is, if bk = xky for all k = 1, . . . , r.

Let us denote by pky the average probability that Bob correctly guesses xky . Then, the

ASP corresponding to r parallel QRACs can be written as

p̄ =
1

2
(p1

1 · p2
1 · . . . · pr1 + p1

2 · p2
2 · . . . · pr2). (115)
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Clearly, the quantities pk1 and pk2 are not independent. Our next technical result is to estab-

lish the relationship between these two. For this result, we assume that the optimal QRAC

strategy is achieved by projective measurements (for a justification of this assumption, see

our subsequent result in Ref. [B]).

Lemma III.2. Let us consider a 2d → 1 QRAC with projective measurements, and let us

denote by py the average probability that Bob correctly guesses xy. Then, the quantum

trade-off function defined as

Mq
d(z) := max{p2 | p1 = z}, (116)

where the maximisation is taken over all possible d-dimensional strategies that give rise to

p1 = z, is given by

Mq
d(z) = 1−

(
d− 1

d

)(√
z −

√
1− z
d− 1

)2

. (117)

Proof. See Ref. [A].

Using the above trade-off functions, the ASP of a 2d → 1 QRAC with non-trivial

product structure can be written as

p̄ =
1

2

[
p1

1 · p2
1 · . . . · pr1 +Mq

d1
(p1

1) · Mq
d2

(p2
1) · . . . · Mq

dr
(pr1)

]
. (118)

This expression depends on r parameters, pk1, and can be maximised using heuristic nu-

merical methods. This provides an effective and accurate (up to machine precision) way

to obtain a tight upper bound on the QRAC ASP for any product structure.

To demonstrate the applicability of our methods, we applied our machinery to the case

of d = 1024. Using the techniques above, we obtain bounds on the ASP for every product

structure. In order to be concise, I present only a few relevant cases in Table I, but the

full list can be found in Ref. [A].

Given the above values, we worked together with an experimental team to certify ir-

reducible 1024-dimensional photonic states and measurements. While the experiment is

not central to this thesis, let me briefly present a few key features of it, and its results

(see Fig. 3). The quantum states are encoded in the linear transverse momentum of single

photons. The single photon source is a continuous-wave laser, attenuated by an acousto-

optical modulator (AOM), calibrated such that the ratio of single-photon events is 82%.

The photons are sent through two spatial light modulators (SLM), which are two 32-by-32

transmissive squares, one of them modulating the amplitudes, the other one the phases.
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Case Optimal p̄

Q1024 0.515625

Q512Q2 0.500980

Q512C2 0.500973

(Q2)10 0.500493

Q2C512 0.500489

C1024 0.500488

TABLE I: Relevant cases for a 1024-dimensional system and the respective optimal ASPs. The no-

tation QdQd′ corresponds to a product of quantum systems of dimensions d and d′. Cd corresponds

to a classical system of dimension d, and (Q2)10 corresponds to a product of 10 qubits.

FIG. 3: Experimental setup. At the state preparation block, the spatial encoding is applied through

two spatial light modulators (SLMs), and the state projection is likewise performed by an SLM

combined with an avalanche single-photon detector (APD) at the measurement projection block.

The state of the photon after the two SLMs is described by

|ψ〉 =
1√
C

32∑

l=1

32∑

v=1

√
tlve
−iφlv |clv〉, (119)

where |clv〉 is the state corresponding to the square (spatial mode) (l, v), tlv and φlv are the

transmission and the phase-shift of the square (l, v), respectively, and C is a normalisation

factor. Since in the experiment we have full control over the amplitudes and the phases,

this state is a completely general 1024-dimensional pure quantum state.

The measurement phase (“Bob”) is analogous to the state preparation. Since for the

ASP in Eq. (111) we need to employ rank-1 projective measurements corresponding to two

MUBs, My
b = |my

b 〉〈m
y
b |, the task is to project onto the state |my

b 〉. We have chosen these

bases carefully such that in the computational basis each vector element has the same

amplitude. Therefore, in order to project onto any of these vectors, only a single SLM is

needed at the measurement side, adjusting the phases. This SLM projects the state onto

|my
b 〉, and we place an avalanche single-photon detector (APD) behind it. If this detector

detects a photon, we consider that it is successfully projected onto the state |my
b 〉, and

hence the outcome is “b”, otherwise it is not, and the outcome is “not b”.



58

Notice that the outcome of this measurement is binary, while in the original QRAC

game the measurement needs to be d-outcome. In our case, a 1024-outcome measurement

would correspond to 1024 detectors, which is certainly not feasible, and therefore this

simplification was necessary. We have also adapted the ASP expression to this modified

experimental setup in the following way. Let us denote by X1 the events when we are

projecting onto |my
b 〉 and Alice’s setting is such that xy = b. Similarly, let us denote by

X2 the events when we are projecting onto |my
b 〉, but xy 6= b. From the experiment, we are

able to count detection events in both cases, denoted by D1 and D2, respectively. Then,

we show that the modified ASP expression

p̄ =
D1

D1 +D2
(120)

coincides with that of Eq. (84), under the assumption that
∑

b |m
y
b 〉〈m

y
b | = I for y = 1, 2.

Using the above figure of merit, we evaluated the experiment that was running for 316

hours at an experimental round rate of 60 Hz. This frequency required the automated

manipulation of the SLMs, performed by two field-programmable gate arrays (FPGA). The

large sample size allowed us to evaluate the experimental data with high precision, using

a Poissonian noise model on photon detection events. The results confirm an irreducible

photonic state and measurements of dimension 1024, certified by the ASP p̄ = 0.515±0.008.

This is more than one standard deviation larger than the second largest ASP with total

dimension 1024, that is, the ASP corresponding to Q512Q2 (see Fig. 4).

FIG. 4: Experimental results. We experimentally observe p̄ = 0.515 ± 0.008, violating the sec-

ond highest ASP bound p̄Q512⊗Q2
(see Table I). The error bar is calculated assuming Poissonian

statistics for a photon detection event.
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B. Self-testing mutually unbiased bases in the prepare-and-measure scenario

1. State of the art and results

At the time of writing article [B], it was already known that in a 2d → 1 QRAC,

quantum strategies can achieve

p̄ =
1

2

(
1 +

1√
d

)
(121)

by employing two measurements corresponding to MUBs [THMB15]. It was also a common

belief that this strategy is optimal, however, it was only proven for rank-1 projective

measurements [ABMP18]. It was neither clear whether this optimality holds for generic

POVMs, nor whether MUBs are the unique measurements achieving this ASP. Self-testing

in the prepare-and-measure scenario was also at its early stages, with only a single paper

addressing this topic [TKV+18], by analysing QRACs in dimension 2. However, higher

dimensional results were completely absent in the literature.

In our work [B], me and my collaborator address the above issues. We prove that

indeed the ASP in Eq. (121) is the optimal quantum value using d-dimensional systems,

even if allowing for POVMs. Moreover, we also show that this value can only be achieved

by MUB measurements. Since different pairs of MUBs are not always equivalent up to

a unitary transformation [Bri09], this is not a self-test in the sense of Definition II.33.

Rather, it certifies a relevant property of the measurements, namely, that they correspond

to MUBs. Notably, our results are essential for the methods in [ABMP18] for solving the

long-standing problem of the number of MUBs in dimension 6.

Using our methods, we also provide robust certification schemes. Namely, we show that

even by observing a sub-optimal ASP, one can lower bound the entropy of the overlaps,

tr(AiBj), of Bob’s two measurements {Ai}di=1 and {Bj}dj=1, and also the sum of the op-

erator norms,
∑

i ||Ai|| and
∑

j ||Bj ||. The former corresponds to a sort of unbiasedness of

the measurements, while the latter quantifies how close the measurements are to being

rank-1 projective. When an experimenter observes the optimal ASP, both of these quanti-

ties achieve their maximal possible values, which certifies a pair of MUBs. However, even

for sub-optimal ASPs, the experimenter can approximately characterise the measurements

using the above quantities.

Using these quantitative characterisations, we are also able to certify two other relevant

and operational properties of the measurements. Specifically, we derive a state-independent

lower bound on the uncertainty generated by the two measurements, based only on the
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QRAC ASP. Moreover, we provide bounds on incompatibility measures, again based only

on the ASP.

2. Technical details

In order to prove that Eq. (121) is an upper bound for the ASP even for POVMs, our

main technical tool is an operator norm inequality, proven by Kittaneh [Kit97].

Theorem III.3. Let A,B ≥ 0 be operators on a Hilbert space. Then ||A+B|| ≤
max{||A|| , ||B||}+

∣∣∣
∣∣∣
√
A
√
B
∣∣∣
∣∣∣.

Let us denote Alice’s input by i, j ∈ {1, . . . , d} and her prepared states by ρij . Using

the above theorem, and the arguments in Proposition II.32, we can bound the ASP as

p̄ =
1

2d2

∑

ij

tr[ρij(Ai +Bj)] ≤
1

2d2

∑

ij

||Ai +Bj ||

≤ 1

2d2

∑

ij

(
max{||Ai|| , ||Bj ||}+

∣∣∣
∣∣∣
√
Ai
√
Bj

∣∣∣
∣∣∣
)
≤ 1

2
+

1

2d2

∑

ij

∣∣∣
∣∣∣
√
Ai
√
Bj

∣∣∣
∣∣∣ ,

(122)

where we also used that ||Ai|| ≤ 1 and ||Bj || ≤ 1 for all i, j. Then, using the fact that

||O|| ≤ ||O||F , where ||O||F =
√

tr(O†O) is the Frobenius norm, we obtain

p̄ ≤ 1

2
+

1

2d2

∑

ij

√
tr(AiBj) ≤

1

2
+

1

2

√∑
ij tr(AiBj)

d2
=

1

2

(
1 +

1√
d

)
=: p̄Q, (123)

where we have used the concavity of the square-root. This concludes the proof that the

value in Eq. (121) is indeed a universal quantum bound for the QRAC ASP, even for

POVMs.

After this proof, we turn to the opposite question, that is, what can be said about

the measurements A and B, upon observing the optimal ASP. It is clear that all the

inequalities in Eqs. (122) and (123) need to be saturated. This immediately implies by the

strict concavity of the square-root that all the overlaps need to be equal, that is,

tr(AiBj) =
1

d
∀i, j. (124)

It is also straightforward from the saturation of the last inequality in Eq. (122), that at

least one of the measurements, say A, needs to satisfy

||Ai|| = 1 ∀i, (125)

which in particular implies that A is a rank-1 projective measurement, that is, Ai = |ai〉〈ai|
for some orthonormal basis {|ai〉}di=1. The last step of the certification requires a technical

lemma.
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Lemma III.4. Let A,B ≥ 0 be operators on a Hilbert space. Then, the equality ||A+B|| =
max{||A|| , ||B||}+

∣∣∣
∣∣∣
√
A
√
B
∣∣∣
∣∣∣ holds only if ||A|| = ||B||.

Proof. See Ref. [B].

This lemma in particular implies that in order to saturate Kittaneh’s inequality in

Eq. (122), it is required that

||Ai|| = ||Bj || ∀i, j, (126)

and we have already seen that it is necessary that ||Ai|| = 1 for all i. That is, both A and

B need to be rank-1 projective measurements in order to achieve the optimal ASP. This

together with the overlap condition Eq. (124) implies that A and B correspond to a pair

of MUBs. Therefore, observing the optimal ASP certifies precisely that the measurements

of Bob constitute a pair of MUBs.

In order to make this certification robust, we define an approximate characterisation of

d-dimensional MUB measurements. While there is no such canonical characterisation, we

choose quantities that suit our certification schemes. First, we define the overlap entropy

HS(A,B) := H 1
2

({
1

d
tr(AiBj)

}

ij

)
, (127)

where H 1
2
({qi}i) = 2 log2

(∑
i

√
qi
)
is the 1

2 -Rényi entropy of the probability distribution

{qi}i. It is easy to see that for d-outcome measurements in dimension d,

HS(A,B) ≤ log2(d2), (128)

and that MUBs saturate this bound.

It is also apparent that the overlap entropy alone is not sufficient for certifying MUBs.

For example, the trivial measurements Ai = Bj = I
d also saturate the bound in Eq. (128).

What is missing from this characterisation is to ensure that A and B are projective, which

together with the uniform overlaps implies that they are MUBs. To this end, we employ

the sum of the norms,

N(A) :=
∑

i

||Ai|| , (129)

and similarly for B. It is easy to see that for d-outcome measurements in dimension d,

N(A) ≤ d (130)

and this bound is saturated if and only if A is rank-1 projective.
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In summary, if we certify that for A and B, HS(A,B) is close to log2(d2) and N(A)

and N(B) are close to d, then the measurements are close to a pair of MUBs in the

sense that they are close to being rank-1 projective, and the overlaps are close to being

uniform. To certify these properties, we need to derive bounds on the above quantities, as

a function of the QRAC ASP. For the overlap entropy, this is a direct consequence of the

first inequality in Eq. (122). It immediately follows that if we observe the ASP p̄, then for

Bob’s measurements A and B it holds that

HS(A,B) ≥ 2 log2[d
√
d(2p̄− 1)]. (131)

This bound is non-trivial as long as p̄ ≥ 1
2 [1 + 1/(d

√
d)], and the optimal ASP, p̄ = p̄Q,

certifies that the overlaps are uniform. For a plot of the bound as a function of the ASP

in dimension 4, see Fig. 5.
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FIG. 5: Lower bound on the overlap entropy for p̄ ∈ [ 12 + 1
2d
√
d
, p̄Q] in dimension 4.

In order to devise a similar bound on the sum of the norms, our main technical tool is

another operator norm inequality, proven by Kittaneh [Kit02].

Theorem III.5. For positive semidefinite operators A and B acting on a finite-

dimensional Hilbert space we have

||A+B|| ≤ 1

2

(
||A||+ ||B||+

√
(||A|| − ||B||)2 + 4

∣∣∣
∣∣∣
√
A
√
B
∣∣∣
∣∣∣
2
)
. (132)

We introduce the quantities nij := 1 − 1
2(||Ai|| + ||Bj ||) (norm deficiency) and sij :=

∣∣∣∣√Ai
√
Bj
∣∣∣∣ (generalised overlap), and using the above theorem and a technical lemma, we
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show that

p̄ ≤ 1

2
+

1

2d2

∑

ij

[
sij − (2−

√
2)sijnij

]
. (133)

In particular, this bound serves as an alternative proof for the certification of MUBs.

Note that omitting the negative term corresponds to nij = 0, which in turn corresponds

to rank-1 projective measurements. In addition, we can bound sij by
√

tr(AiBj), which

immediately gives the bound in Eq. (123).

More importantly, the bound above allows us to bound the sum of the norms in terms

of the ASP. Namely, for p̄ > p̄0 := 1
2 + 1

2d2

√
(d2 − 1)d we can show that

N(A) ≥ d− 2 +
√

2

d

(
1−

√
d3(2p̄− 1)2 − (d2 − 1)

)
(134)

and by symmetry the same bound holds for N(B). In particular, it is easy to see that the

optimal ASP, p̄ = p̄Q, certifies N(A) = N(B) = d, that is, that both measurements are

rank-1 projective. For a plot of the bound as a function of the ASP in dimension 4, see

Fig. 6.
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FIG. 6: Lower bound on the sum of the norms for p̄ ∈ (p̄0, p̄Q] in dimension 4.

In summary, both the overlap entropy and the sum of the norms can be certified in a

robust manner from the observed QRAC ASP, and these constitute a robust certification

of MUB measurements.

Using these robust certificates, we are able to certify two additional relevant properties

of Bob’s measurements. The first such property is that of the entropic uncertainty of two

measurements. Let us denote the Shannon entropy of the outcome distribution of the

measurement A on the state ρ by H(A)ρ, where the Shannon entropy of the distribution
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{qi} is defined as −∑i qi log2 qi. Maassen and Uffink provided a state-independent lower

bound on H(A)ρ +H(B)ρ for two rank-1 projective measurements [MU88], and this lower

bound is the largest for a pair of MUBmeasurements. That is, MUBs are optimal projective

measurements for state-independent randomness extraction. The bound of Maassen and

Uffink was later generalised to arbitrary POVMs in Ref. [KP02], for which it reads

H(A)ρ +H(B)ρ ≥ − log2 c, (135)

where c := maxij
∣∣∣∣√Ai

√
Bj
∣∣∣∣2. Therefore, in order to bound the entropic uncertainty of

Bob’s measurements, we need an upper bound on the generalised overlap, sij . We are

able to derive such a bound using our techniques, and we obtain a bound on the entropic

uncertainty in terms of the QRAC ASP,

H(A)ρ +H(B)ρ ≥ −2 log2

(
2p̄− 1 +

1

d

√
d(d2 − 1)[1− d(2p̄− 1)2]

)
. (136)

The optimal ASP, p̄ = p̄Q, certifies log2 d bits of uncertainty, which is the maximal value

attainable by a pair of d-dimensional projective measurements. For a plot of the bound as

a function of the ASP in dimension 4, see Fig. 7.
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FIG. 7: Lower bound on the entropic uncertainty over the non-trivial region in dimension 4.

Finally, using our bounds, we are able to upper bound various incompatibility robustness

measures of Bob’s measurements in terms of the QRAC ASP. While we can obtain bounds

for different measures using the upper bounds in Ref. [C], let me only present the bound

for the so-called “depolarising incompatibility robustness” measure, using the upper bound

from Ref. [DSFB19]. Since the analytic formula is rather complicated, let me present the
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bound in dimension 4 in Fig. 8, and let me remark that the optimal ASP, p̄ = p̄Q, certifies

the value of the incompatibility depolarising robustness, η∗ =
√
d/2+1√
d+1

, which is precisely

the MUB value.
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FIG. 8: Upper bound on the incompatibility robustness over the non-trivial region in dimension 4.

In summary, our techniques allow us to certify a pair of MUBs in arbitrary dimension d

in a robust manner. Moreover, we are also able to robustly certify relevant properties of the

measurements, namely the entropic uncertainty and different incompatibility measures.
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C. Incompatibility robustness of quantum measurements: a unified framework

1. State of the art and results

At the time of writing article [C], robustness based measures of incompatibility have

already been studied in the literature to a great extent (see Ref. [HMZ16] for an intro-

duction). However, their properties were not systematically analysed, and the study of

different measures usually appeared rather scattered in the literature. The question of

which measurements are the “most incompatible” (say, in a given dimension) has not been

addressed before either.

In our work [C], we address the above shortcomings by a thorough analysis of ro-

bustness based measures of incompatibility. We introduce a universal framework, that

associates with every well-defined noise model a robustness measure. We make explicit

connections between the properties of the noise models and the emerging properties of the

corresponding incompatibility measures. Then, we turn our attention to five commonly

used measures, that are all special cases of our generic framework. Using our framework,

we analyse the properties of these measures, and show that some of them do not satisfy

certain natural properties, and hence one should be cautious when using them. Then,

using techniques from semidefinite programming, we derive universal lower bounds and

measurement-dependent upper bounds on all the five measures.

We also compute the exact value of all the five measures for an arbitrary pair of rank-1

projective measurements on a qubit, and for pairs of MUBs in arbitrary dimension d.

Comparing these results with our universal bounds, we deduce that for one of the mea-

sures MUBs are among the most incompatible measurement pairs in every dimension d.

However, by finding explicit counterexamples, we also find that MUBs are not the most

incompatible pairs for two other measures. Therefore, we conclude that what constitutes

the most incompatible pair of measurements in general depends on the specific measure of

incompatibility.

2. Technical details

Our universal framework for robustness based measures of incompatibility is based on

Definition II.40, which I repeat here for convenience:

Definition III.6. Given two POVMs, {Aa}nAa=1 and {Bb}nBb=1 on Cd, and a correspond-

ing noise set, NA,B ⊆ POVMnA,nB
d such that NA,B ∩JMnA,nB

d 6= ∅, we say that the
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incompatibility robustness η∗A,B of the pair (A,B) with respect to this noise model is

η∗A,B = sup
η∈[0,1]

(M,N)∈NA,B

{
η
∣∣∣ η · (A,B) + (1− η) · (M,N) ∈ JMnA,nB

d

}
. (137)

FIG. 9: Schematic representation of a generic incompatibility robustness measure for a closed and

convex noise set NA,B . Note that in general the noise set need not be contained in the jointly

measurable set JM. One can also easily infer that the optimal noise pair (M,N) must lie on the

boundary of NA,B and that the optimal noisy pair η∗A,B · (A,B) + (1− η∗A,B) · (M,N) must lie on

the boundary of JM.

We refer to the map N : (A,B) 7→ NA,B as the noise model, and the set NA,B as

the noise set corresponding to the pair (A,B). By noting that the set JMnA,nB
d is a

convex subset of the set of all POVM pairs POVMnA,nB
d , these robustness based measures

can be interpreted geometrically, as depicted in Fig. 9. Also observe that according to

Definition III.6, the lower the value η∗A,B is, the more incompatible the pair (A,B) is.

We are able to link some simple properties of the noise model to some desirable prop-

erties of the emerging incompatibility measures. In particular, whenever the noise set is

closed, the supremum in Eq. (137) is always achieved. Moreover, if the noise set is co-

variant under unitaries, that is, NUAU†,UBU† = U NA,B U
†, then the resulting measure is

invariant under unitaries, that is, η∗
UAU†,UBU† = η∗A,B.

On a more operational note, we would like our measures not to decrease under some

natural operations on POVM pairs that preserve joint measurability. In other words, such

“free” operations should not create more incompatible measurement pairs, a requirement

motivated by resource theories [CFS16, Fri17]. We consider two such natural operations:

post-processing and pre-processing.
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Post-processing corresponds to stochastically relabelling measurement outcomes, just

as in Eq. (32). More formally,

Definition III.7. A post-processing β maps {Aa}nAa=1 to {Aβa′}
n′A
a′=1, where

Aβa′ =

nA∑

a=1

β(a′|a)Aa, (138)

and {β(a′|a)}a′ is a probability distribution for every a ∈ {1, 2, . . . , nA}.

FIG. 10: Schematic representation of a post-processing of a measurement.

It is easy to verify that whenever (A,B) is jointly measurable, then so is (AβA , BβB ),

where βA and βB are potentially different post-processing functions.

The second class of free operations is pre-processing, which corresponds to applying a

quantum channel Λ† on the quantum state before applying the measurement.

Definition III.8. A quantum channel is a completely positive trace preserving (CPTP)

linear map Λ† : B(Cd′) → B(Cd). Complete positivity (CP) means that for every k ∈ N,

k ≥ 2 we have that

(Λ† ⊗ Ik) : B(Cd
′ ⊗ Ck)→ B(Cd ⊗ Ck) (139)

preserves positivity, whereas trace preserving means that for every ρ ∈ B(Cd′), we have that

tr[Λ†(ρ)] = tr ρ.

Formally one can think of this procedure as applying the dual channel Λ on the mea-

surement. The dual of a CPTP map as the one in the above definition is a CP-unital map,

that is, a CP map Λ : B(Cd)→ B(Cd′) such that Λ(Id) = Id′ . With this definition, we can

define pre-processing only in terms of the measurement.

Definition III.9. A pre-processing Λ maps {Aa}nAa=1 to {AΛ
a }nAa=1, where

AΛ
a = Λ(Aa), (140)

and Λ : B(Cd) 7→ B(Cd′) is a completely positive unital map.
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FIG. 11: Schematic representation of a pre-processing of a measurement.

It is easy to verify that whenever (A,B) is jointly measurable, then so is (AΛ, BΛ),

where in this case we apply the same pre-processing to both measurements.

Therefore, from a meaningful measure of incompatibility, η∗A,B, we expect that it does

not decrease under pre- and post-processings. That is, if we denote a pre- or post-processing

as a map Φ : (A,B) 7→ Φ(A,B), then ideally we expect that η∗Φ(A,B) ≥ η∗A,B for all

pairs (A,B). Notably, we are able to verify whether this monotonicity property holds

for an arbitrary incompatibility robustness measure by looking only at the noise model.

Specifically, whenever it holds that Φ(NA,B) ⊆ NΦ(A,B) for all pairs (A,B), then it follows

that η∗A,B is monotonic under the operation Φ.

Such monotonicity properties turn out to be crucial when looking for the most in-

compatible pairs of measurements. Specifically, if we are interested in what is the most

incompatible pair of measurements in a given dimension (regardless of the number of out-

comes) under a measure that is monotonic under post-processing, then the problem can

be significantly simplified. Notice that every POVM pair (A,B) in dimension d can be

written as a post-processing of some rank-1 POVM pair (A′, B′) in dimension d. One

should simply consider the spectral decomposition of the POVM elements, i.e.

Aa =

rank(Aa)∑

ja=1

λjaa |αjaa 〉〈αjaa |, (141)

and define the POVM Ã with elements

Ãjaa = λjaa |αjaa 〉〈αjaa |, (142)

where a = 1, . . . , nA and ja = 1, . . . , rank(Aa). The POVM Ã is clearly rank-1, and using

a similar construction for defining B̃, it is immediate to see that (A,B) can be obtained

from (Ã, B̃) via post-processing. If our measure of incompatibility is monotonic under

post-processing, then we have that η∗A,B ≥ η∗
Ã,B̃

, and therefore when looking for the most

incompatible measurement pairs, it is sufficient to consider only rank-1 POVM pairs.

The last tool for finding the most incompatible measurements is to derive universal

(measurement independent) lower bounds on incompatibility robustness measures. In case

our measure is monotonic under post-processing, by the above argument it is enough
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to derive these bounds for rank-1 POVM pairs, as the bound will automatically apply

for all pairs. Our technical tool for deriving such bounds is semidefinite programming

[BV04]. Specifically, for a given POVM pair (A,B), the incompatibility robustness η∗A,B
in Definition II.40 corresponds to the optimisation problem

η∗A,B = sup
η,{Gab},{Ma},{Nb}

η

s.t. η ≤ 1

Gab ≥ 0 ∀a, b
∑

b

Gab = ηAa + (1− η)Ma ∀a

∑

a

Gab = ηBb + (1− η)Nb ∀b
(
{Ma}a, {Nb}b

)
∈ NA,B .

(143)

For the noise models of interest, the supremum can be replaced by the maximum and

the last constraint can be written as a set of linear constraints, and therefore the above

optimisation problem is a semidefinite program (SDP). SDPs can be efficiently solved

numerically, which provides a useful tool for computing the incompatibility robustness of

a specific pair of POVMs. However, our main aim is to provide analytic bounds on η∗A,B for

every pair (A,B). To this end, we can still employ the SDP formulation given in Eq. (143).

Notice that any set of variables η, {Gab}, {Ma}, {Nb} that satisfies all the constraints will

provide a lower bound on η∗A,B. Therefore, in order to derive a universal lower bound on

an incompatibility measure, we need to find suitable variables η, {Gab}, {Ma}, {Nb} such

that η does not depend on the measurements (A,B), that give rise to universal bounds

η∗A,B ≥ η.
The most challenging part of finding such variables turns out to be to find suitable

parent POVMs {Gab}. That is, a collection of positive semidefinite operators that add up

to the identity, such that the marginal sums over a and b contain terms proportional to Bb

and Aa, respectively. To this end, we employ a generic ansatz

Gab ∝ {Aa, Bb}+ (αbAa + βaBb) + γabI + δ(A
1
2
aBbA

1
2
a +B

1
2
b AaB

1
2
b ), (144)

where αb, βa, γab and δ are real parameters, and {A,B} = AB+BA is the anticommutator

and A
1
2 is the unique positive semidefinite operator such that

(
A

1
2

)2
= A. It is easy to

see then that
∑

abGab ∝ I. Notably, when both Aa and Bb are rank-1, then checking the

positivity of Gab is also tractable. Since for post-processing monotonic measures, bounds

on rank-1 pairs of POVMs are universal, we are able to derive universal lower bounds on
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such measures using the above ansatz. We take a similar approach to derive measurement-

dependent upper bounds on the robustness measures, by employing the so-called dual SDP,

and similarly introducing ansatz solutions.

Using our techniques, we investigate five measures that are widely used in the lit-

erature. These are all special cases of Definition II.40, corresponding to different noise

models N giving rise to the noise sets NA,B. We analyse the monotonicity of each of these

measures under pre- and post-processing, derive universal lower bounds and measurement-

dependent upper bounds on them, and compute the exact value for d-dimensional MUB

measurements. Our findings are summarised in Table II.

NA,B Post Pre Lower MUB value Upper

ηd
{({

trAa
I
d

}
a
,
{

trBb
I
d

}
b

)}
yes no

d− 2 +
√
d2 + 4d− 4

4(d− 1)

λ− gd
f − gd

ηr
{({

I
nA

}
a
,
{

I
nB

}
b

)}
no yes

1

2

(
1 +

1√
nAnB + 1

)
1

2

(
1 +

1√
d+ 1

)
λ− gr
f − gr

ηp
{({

pa I
}
a
,
{
qb I
}
b

)}
yes max{ηd, ηr} λ− gp

f − gp

ηjm JMnA,nB

d yes
2
√
d2 + 4d− 4

3d− 2 +
√
d2 + 4d− 4





2(
√

2− 1) d = 2

1
2

(
1 + 1√

d

)
d ≥ 3

λ− gjm
f − gjm

ηg POVMnA,nB

d yes
1

2

(
1 +

1√
d

)
λ

f

TABLE II: Summary of the results on the depolarising (ηd), random (ηr), probabilistic (ηp),

jointly measurable (ηjm), and general (ηg) incompatibility robustness of pairs of POVMs. “Post”

and “Pre” stand for post-processing and pre-processing monotonicity, respectively. “Lower” and

“Upper” refer to lower and upper bounds on the specific measures, respectively. d is the dimension,

while nA and nB are the outcome numbers. The quantities λ, f , gd, gr, gp and gjm are presented

in Eq. (145).

The quantities λ, f , gd, gr, gp and gjm are given by

λ = max
a,b

{
max Sp

(
Aa +Bb

)}
, f =

∑

a

trA2
a

d
+
∑

b

trB2
b

d
,

gd =
∑

a

(
trAa
d

)2

+
∑

b

(
trBb
d

)2

, gr =
1

nA
+

1

nB
,

gp = min
a

trAa
d

+ min
b

trBb
d

, and gjm = min
a,b

{
min Sp

(
Aa +Bb

)}
,

(145)

where Sp(A) is the spectrum of the operator A.

A simple observation from Table II is that the noise sets satisfy the inclusion relations

(Nd
A,B ∪Nr

A,B) ⊆ Np
A,B ⊆ Njm

A,B ⊆ Ng
A,B, (146)
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which implies an ordering on the incompatibility measures

max{ηd
A,B, η

r
A,B} ≤ ηp

A,B ≤ η
jm
A,B ≤ η

g
A,B. (147)

To demonstrate our techniques and the above relations, we analytically computed the value

of all five measures for a pair of rank-1 projective qubit measurements, as a function of

half of the Bloch sphere angle, θ, the results of which can be seen on Fig.12. From this

figure, the ordering of the measures as in Eq. (147) is apparent, as well as the observation

that for d = 2, MUBs are the most incompatible rank-1 projective qubit measurements.

FIG. 12: The value of all the different measures for a pair of rank-one projective measurements

on a qubit such that the angle between the Bloch vectors of these measurements equals 2θ. Note

that the rightmost point, where θ = π/4, corresponds to qubit MUBs, which demonstrates the

fact that MUBs are the most incompatible rank-1 projective qubit measurements under all these

measures. Although ηd, ηr, and ηp coincide in this case, this is not the case in general.

Furthermore, from Table II we see that the depolarising incompatibility robustness, ηd,

is not monotonic under pre-processing and that the random incompatibility robustness,

ηr, is not monotonic under post-processing. These we prove by providing explicit coun-

terexamples in Ref. [C]. Note that the non-monotonicity of ηr under post-processing is

essentially the reason why we cannot find a lower bound for this measure that depends

only on the dimension. In particular, for this measure we show that in every dimension

one can construct measurements that reach ηr = 1
2 by adding artificial extra outcomes that

never occur (which can be considered as a post-processing).
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It is also apparent from Table II that for the generalised incompatibility robustness, ηg,

we have that MUBs are among the most incompatible pairs of d-dimensional measurements,

as they saturate the universal lower bound. We also find that they are not the unique most

incompatible pair. For example, if we split up one of the outcomes of a d-dimensional MUB,

Aa → {1
2Aa,

1
2Aa}, leading to a measurement with an extra outcome, this will still attain

the optimal value of ηg.

Perhaps surprisingly, we find that MUBs are not the most incompatible pairs of d-

dimensional measurement pairs for the depolarising (ηd) and the probabilistic (ηp) incom-

patibility robustness measures, when the dimension is larger than 2. For the former, our

best candidate for the most incompatible pair is a pair of MUBs on a 2-dimensional sub-

space, where the remaining subspace is irrelevant. For the latter, we find a rank-1 projective

measurement pair in dimension 3 that is strictly more incompatible than both qutrit MUBs

and qubit MUBs embedded in dimension 3 in the above sense. For the jointly measurable

incompatibility robustness, ηjm, we have not found any measurement pairs in dimension 3

that are more incompatible than MUBs, but also could not prove the optimality of MUBs.

To demonstrate our findings, let me present a plot of the values of the incompatibility

robustness measures ηg, ηjm, ηp and ηd on a continuous path that connects 3-dimensional

MUBs, (AMUB, BMUB), 2-dimensional MUBs embedded in 3 dimensions, (AqMUB, BqMUB)

and the rank-1 projective pair conjectured to be optimal for ηp, (Adev, Bdev), on Fig. 13.

In summary, we have thoroughly analysed the above five measures, and could verify

or disprove certain natural properties. While for one of the measures we can prove that

MUBs are among the most incompatible d-dimensional pairs, it is also apparent that this

is not the case in general.
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FIG. 13: The (numerical) value of the four measures along a one-parameter path of rank-one

projective measurements in dimension d = 3. Importantly, on this path the pair (AMUB, BMUB)

achieves the minimum value for ηg and ηjm, but it is outperformed by (Adev, Bdev) for ηp and by

(AqMUB, BqMUB) for ηd.
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IV. OUTLOOK

While the above results fill crucial gaps in the field of semi-device-independent certifi-

cation methods and measurement incompatibility, and significantly advance both of these

fields, we can by no means consider these topics completely understood. In this section,

I outline a few possible further research directions, stemming from, or related to the core

material of this thesis.

A. Experimental self-test of MUBs in the prepare-and-measure scenario

Since the certification methods we developed in Ref. [B] are robust to noise, they are

applicable to experiments. A natural continuation of this line of research is therefore to

perform such an experiment. In fact, this has recently been done by my collaborators with

whom I also worked together on the preparation of the article [A]. With my assistance

they adapted the theory to a quantum optical setup, using multi-core optical fibres. They

performed a 24 → 1 QRAC experiment with an average success probability high enough to

ensure that all the quantities appearing in Ref. [B] can be certified in the non-trivial region.

Together with the experimental team, we are in the process of writing up the findings of

the experiment, and the work should be available on the arXiv repository within a few

months.

B. Multi-input quantum random access codes

Both the works [A] and [B] employ 2d → 1 quantum random access codes in order to

certify high-dimensional quantum systems in the prepare-and-measure scenario. A natural

extension of this protocol is to provide the preparation side, Alice, with more than 2

inputs, and correspondingly Bob with more than 2 measurement settings. Such QRACs

are sometimes denoted as nd → 1, and have already been studied, partially by myself

[Far17]. While these results are incomplete, it turns out that for n > 2, in general, different

equivalence classes of MUBs (sets that are not related by a unitary transformation) give rise

to different average success probabilities (see also Ref. [ABMP18]). Nevertheless, according

to numerical evidence, our best candidates for the optimal performance in these protocols

are still sets of nMUBs (whenever they exist). However, up to this date, there is no analytic

proof of this, even for the case of 33 → 1 QRACs. It would be an interesting further research

direction to investigate the optimal strategies in generic nd → 1 QRACs and whether it is
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possible to certify the optimal measurements (perhaps a specific equivalence class of MUB

n-tuples) in this scenario.

C. Semi-device-independent quantum cryptography

Certification schemes in quantum theory often lead to secure quantum key distribution

or random number generation protocols. In particular, the 22 → 1 QRAC was shown to

give rise to secure semi-device-independent quantum key distribution [PB11]. Given our

certification scheme for the general 2d → 1 QRAC in Ref. [B], it is a promising future

research direction to extend the methods of [PB11] and prove the semi-device-independent

cryptographic security of the 2d → 1 QRAC in arbitrary dimensions, potentially leading

to higher key rates than that of the qubit protocol.

Another research path in this direction is to further relax the SDI assumptions, and

devise certified quantum random numbers under certain plausible assumptions. This is

precisely what I have been working on in the last year with my collaborators from Vienna,

Brno and Bratislava. We have analysed a simple testable random number generator based

on a laser, a beam splitter, a movable shutter and a photodetector. Using techniques from

linear programming, we are able to bound the amount of certified randomness produced

by the device, under various levels of assumptions. We do not put any constraints on

the photodetector (as this is the most complex part of the setup), and provide bounds on

the randomness under the assumption of a single photon source, a known photon number

distribution, and a known mean value of photon numbers. We are already in the process

of writing up the findings of our analysis, and are working together with an experimental

team from Edinburgh to demonstrate the applicability of the device. The manuscript of

this work should be available on the arXiv repository within a few months.

D. Device-independent certification of mutually unbiased bases

While the semi-device-independent paradigm is experimentally much more feasible, it

is still of great interest whether generic d-dimensional MUBs can be self-tested in a Bell

scenario. With my collaborators, we have partially solved this question in our most recent

manuscript [TFR+19], by devising a family of Bell inequalities that are maximally violated

by an arbitrary pair of d-dimensional MUBs. In the converse direction, the maximal

violation certifies an operational definition of mutual unbiasedness, that does not refer to

the Hilbert space dimension:
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Definition IV.1. We say that two d-outcome measurements {Pa}da=1 and {Qb}db=1 are

mutually unbiased if they are projective and the following implications hold:

〈ψ|Pa|ψ〉 = 1⇒ 〈ψ|Qb|ψ〉 =
1

d

〈ψ|Qb|ψ〉 = 1⇒ 〈ψ|Pa|ψ〉 =
1

d
, (148)

for all a and b. That is, two projective measurements are mutually unbiased if the eigen-

vectors of one measurement give rise to a uniform outcome distribution for the other mea-

surement.

It turns out that the maximal violation of the Bell inequalities introduced by us certifies

precisely the above property, that can equivalently be written using the algebraic relations

below.

Theorem IV.2. Two d-outcome measurements {Pa}da=1 and {Qb}db=1 are mutually unbi-

ased if and only if

Pa = dPaQbPa and Qb = dQbPaQb, (149)

for all a and b.

Naturally, any pair of d-dimensional MUBs satisfy the above criteria. However, it turns

out that mutually unbiased measurements (MUMs) in the above sense are strictly more

general than MUBs. In [TFR+19], we prove that for d = 2 and 3, every MUM pair can be

written as a direct sum of d-dimensional MUB pairs. However, for d = 4 and 5, we provide

explicit examples of MUM pairs that cannot be written as a direct sum of d-dimensional

MUB pairs. Lastly, we provide a protocol for device-independent quantum key distribution

based on our Bell inequalities, with an optimal key rate of log2 d bits.

E. Resource theory of incompatibility

While in our work [C] we study the monotonicity of incompatibility robustness measures

under pre- and post-processing, we do not address the question of a full resource theory.

That is, what are the most general, physically motivated operations that preserve joint

measurability? What are the measures of incompatibility that are monotonic under such

operations? Lastly, having answered these questions, can one define a resource theory of

incompatibility with a single most incompatible measurement pair? These questions have

been partially answered recently in Ref. [BCZ19], by considering a set of operations that
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allow one to freely transform between all pairs of compatible measurements. The authors

also provide a complete set of incompatibility measures that are monotonic under these

operations, based on certain quantum state discrimination games. However, in this theory

it is unclear which incompatible measurement pairs can be transformed to which other ones,

and in particular, whether there exists a single most incompatible pair of measurements.

Therefore, investigating possible resource theories of incompatibility is still an open and

promising future research direction.
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We report on a new class of dimension witnesses, based on quantum random access codes, which are a
function of the recorded statistics and that have different bounds for all possible decompositions of a high-
dimensional physical system. Thus, it certifies the dimension of the system and has the new distinct feature of
identifying whether the high-dimensional system is decomposable in terms of lower dimensional
subsystems. To demonstrate the practicability of this technique, we used it to experimentally certify the
generation of an irreducible 1024-dimensional photonic quantum state. Therefore, certifying that the state is
not multipartite or encoded using noncoupled different degrees of freedom of a single photon. Our protocol
should find applications in a broad class of modern quantum information experiments addressing the
generation of high-dimensional quantum systems, where quantum tomography may become intractable.

DOI: 10.1103/PhysRevLett.120.230503

Introduction.—The dimension d of physical systems is a
fundamental property of any model, and its operational
definition arguably reflects the evolution of physics itself. In
quantum mechanics, it can be seen as a key resource for
information processing since higher dimensional systems
provide advantages in several protocols of quantum com-
putation [1] and quantum communications [2]. In the field of
quantum foundations, a recent proposal suggests that, in
order to understand and create macroscopic quantum states,
it will be necessary to take advantage of high-dimensional
systems [3]. Therefore, it is natural to understand why there
is a growing endeavor to coherently control quantum
systems of large dimensions [4–16]. Nonetheless, such
new technological advances require the simultaneous devel-
opment of practical methods to certify that the sources are
truly producing the required quantum states. In principle,
one can rely on the process of quantum tomography [17–23],
but this approach quickly becomes intractable in higher
dimensions as at least d2 measurements are required [24].
To address this problem, the concept of dimension

witness (DW) was introduced. The original idea was based
on the violation of a particular Bell inequality [25] but was
then extended to the more practical prepare-and-measure
scenario [26]. In general, DWs are defined as linear
functions of a few measurement outcome probabilities
and have classical and quantum bounds defined for each
considered dimension [4,25–30]. Thus, they allow for the

device-independent certification of the minimum dimen-
sion required to describe a given physical system and can
also infer whether it is properly described by a coherent
superposition of logical states. Nevertheless, these tests do
not provide information about the composition of the
system, which is crucial for high-dimensional quantum
information processing. This point has been recently
investigated by W. Cong et al. [31], where they introduced
the concept of an irreducible dimension witness (IDW) to
certify the presence of an irreducible four dimensional
system. Specifically, their IDW distinguishes whether if the
observed data are created by one pair of entangled ququarts,
or two pairs of entangled qubits measured under sequential
adaptive operations and classical communication.
Here, we introduce a new class of DWs, namely gamut

DWs, which certifies the dimension of the system and has
the new distinct feature of identifying whether any high-
dimensional quantum system is irreducible. It is based on
quantum random access codes (QRACs), which is a
communication task defined in a prepare-and-measure
scenario [32]. To demonstrate the practicability of our
new technique, we experimentally certify the generation of
an irreducible 1024-dimensional photonic quantum system
encoded onto the transverse momentum of single photons
transmitted over programmable diffractive optical devices
[5,21–23,33–35]. To our knowledge, our work represents
an increase of about 2 orders of magnitude to any reported
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experiment using path qudits. From the recorded data, one
observes a violation of the bounds associated with all
possible decompositions of a 1024-dimensional quantum
system, thus, certifying that the generated state is not
encoded using noncoupled different degrees of freedom of
a photon, e.g., polarization and momentum. Nonetheless,
our method is broadly relevant and should also find
applications in multipartite photonic scenarios and new
platforms for the fast-growing field of experimental high-
dimensional quantum information processing.
Gamut dimension witness.—As stated earlier, the protocol

we use in our main theorem is based on QRACs. Thus, first,
we give a brief description (see, e.g., [32] for more details) of
this task (see Fig. 1): one of the parties, Alice, receives two
input dits: x1 and x2 ∈ f1;…; dg. She is then allowed to send
one d-dimensional (quantum) state, ρx1x2 to Bob, depending
on her input. Bob is then given a bit y ∈ f1; 2g and his task is
to guess xy. He does so by performing a quantum measure-
ment My and a classical post-processing function Dy. As a
result, he outputs b ∈ f1;…; dg.
For a single round of the protocol, the success

probability is Pðb ¼ xyjx1; x2; yÞ. As a figure or merit
over many rounds with uniformly random inputs,
we employ the average success probability (ASP): p̄ ¼
ð1=2d2ÞPx1;x2;yPðb ¼ xyjx1; x2; yÞ. Thus, we are looking
for the maximal value of p̄, optimizing over all possible
encoding and decoding strategies. It was proven [36] that,
for classical strategies (i.e., classical states and decoding
functions), the optimal ASP is p̄Cd

¼ 1
2
ð1þ 1=dÞ. In the

quantum case, the optimal strategy is reached by using
mutually unbiased bases (MUBs) for encoding and decod-
ing [37,38], and the ASP is p̄Qd

¼ 1
2
ð1þ 1=

ffiffiffi
d

p Þ.
Now,we estimate theoptimalASPs for composite systems,

for all possible product structures, defined as follows.

Definition 1.—For a fixed d, we define a product
structure by the set fr; fdkg; fαkgg. For a composite
system, d ¼ Q

r
k¼1 dk, where dk is the dimension of each

subsystem and r is the number of subsystems. The state of
the composite system can be written as ρ ¼ ρ1α1 ⊗ ρ2α2 ⊗
� � � ⊗ ρrαr . Here, αk ¼ c and αk ¼ q are used to denote the
“classical” and “quantum” nature of the subsystem, respec-
tively. Then, ρkc ∈ Δdk−1 is a classical state, and ρkq ∈
SðCdkÞ is a quantum state.
Consider a set of measurement and state preparation

settings and fix the total dimension of the physical system
in question. We call a linear function on the measurement
outcome probabilities a gamut dimension witness (GDW) if
its extremal values for all possible product structures are
different. For example, in d ¼ 4, a GDW has different
extremal values for a ququart, two qubits, one qubit and a
bit, and a quart. The main theoretical result of this work is
to demonstrate that d-dimensional QRACs can be used as
GDWs for d-dimensional physical systems. To highlight
this, we set it as a theorem.
Theorem 1.—d-dimensional QRACs serve as gamut

dimension witnesses using the ASP function.
The proof of this theorem and all related lemmas can be

found in the Supplemental Material [39]. Let us now sketch
the main tools for proving the theorem. They help to
understanding the problem, and can be independently used.
Note that the following lemmas apply in more general
QRAC scenarios as well [39].
We assume that Bob’s measurements have the same

product structure as the state generated by Alice. That is,
we exclude that Bob’s state certification would use entan-
gling measurements. The motivation here is to rule out
sequential uses of lower dimensional systems as a way to
simulate higher dimensional statistics, e.g., to discriminate
between n sequential uses of a d-dimensional system, and a
dn-dimensional system. A physical motivation for this
assumption is to think that, if Alice cannot couple a
particular set of degrees of freedom (e.g., polarization
and momentum), then neither can Bob because he has
access to the same equipment as Alice does [43].
Therefore, the most general strategy for decoding the

d-dimensional system ρ ¼ ρ1 ⊗ ρ2 ⊗ � � � ⊗ ρr is as fol-
lows: Bob performs sequential adaptive measures on the
subsystems in the sense of [31]. He starts by measuring
subsystem ρ1 to obtain the outcome b1. Then, his choice of
the measurement to be performed in ρ2 may depend on b1.
Successively, each measurement on ρk can depend on all
the measurement outcomes obtained previously. After
performing all measurements, Bob feeds the obtained
outcomes to a classical post-processing function and out-
puts his final guess on xy, which is b ¼ Dyðb1b2;…; brÞ.
The bounds of the GDW in this general scenario are

extremely hard to obtain. The following results help,
making the analysis easier. First, it is argued in [32] that,

FIG. 1. Our d-dimensional QRACs scenario. Alice receives the
input dits x1 and x2 ∈ f1;…; dg, and prepares the state ρx1x2
which is sent to Bob. He receives the input y ∈ f1; 2g, which
defines the quantum measurement My and the classical post-
processing function Dy to be applied to ρx1x2 . As a result, Bob
outputs b.
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in an optimal strategy, it is enough to use encoded pure
states. Similarly, it has been shown that rank 1 projective
measurements (explicitly: mutually unbiased bases) opti-
mize two-input QRACs [38]. Thus, in the following, we
only deal with pure states for both Alice and Bob.
Additionally, we can eliminate classical post-processing
functions.
Lemma 1.—In QRACs, for optimality of the ASP, there

is no need for classical post-processing functions.
Last, we note that:
Lemma 2.—In QRACs, for optimality of the ASP, there

is no need for sequential adaptive measurements.
Observe that the above lemmas together imply that the

highest ASP for a composite system can be achieved with a
strategy that consists of r QRACs in parallel, one on each
subsystem ρk, independently. In this case, if wewrite Alice’s
inputs as dit strings xy ¼ x1yx2y;…; xry, the success proba-
bility for each round isPðb ¼ xyjx1; x2; yÞ ¼

Q
r
k¼1 Pðbk ¼

xkyjxk1; xk2; yÞ. The optimal p̄ is not necessarily given by the
independent optimal strategies on the individual subspaces.
Therefore, in order to optimize it we introduce the trade-off
function MdðzÞ (see the Supplemental Material [39]),
which provides the optimal probability of guessing dit x2
given a fixed probability of guessing dit x1. Let z ¼
PðBob correctly guessesx1Þ. Then, MdðzÞ in dimension d
is defined byMdðzÞ¼maxfPðBobcorrectlyguessesx2Þjzg,
where the maximization is limited to all encoding-decoding
strategies respecting the condition of guessing x1 with
probability z. Thus, in a general case,

p̄Qd1
;…;Cdr

¼ max
z1;…;zr

1

2
½z1 �� �zrþMq

d1
ðz1Þ���Mc

dr
ðzrÞ�; ð1Þ

where we denote d-dimensional quantum and classical
states by Qd and Cd, respectively. M

q
d and Mc

d are the
corresponding quantum, and classical trade-off functions
[39]. Therefore, p̄ is a function of r real variables, and its
maximum can be found using standard heuristic numerical
search algorithms [44]. We present the ASP optimal values
for some relevant cases of ad ¼ 1024 dimensional system in
Table I. The full list of cases is found in the Supplemental
Material [39]. Note that the gaps between the different ASP
values are large enough to be experimentally observed, as
we demonstrate next.
Experiment.—To demonstrate the practicability of our

technique, we generate a 1024-dimensional photonic state,
encoded into the linear transverse momentum of single-
photons, and use the 1024-dimensional QRAC GDW to
certify that it is an irreducible quantum system. To achieve
this, first, we show that the ASP [Eq. (1)] can be written as a
simple function of the detection events. Then, we observe
that our recorded statistics violate the second highest ASP
bound, Q512Q2, given in Table I, thus, ensuring that it is an
irreducible 1024-dimensional quantum system.
In the 1024-dimensional QRAC GDW, Bob measures

the elements of the two 1024-dimensional MUBs given in

the Supplemental Material [39]. We denote the MUB states
by jmy

ji, where y ¼ 1, 2 defines the measuring base MUB1

or base MUB2, and j ¼ 1;…; 1024 denotes the state of a
given base. Alice’s state is written in terms of the two input
dits x1 and x2 as an equal superposition of the states Bob
would need to guess xy correctly

jΨx1x2i ¼
1

N
ðjm1

x1i þ sgnðhm1
x1 jm2

x2iÞjm2
x2iÞ; ð2Þ

where N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 1

32
Þ

q
is a normalization factor and sign

is the sign function. The optimality of the encoded states
(2), and the use of MUBs is derived in the Supplemental
Material [39].
For the experimental test, we resort to the setup depicted

in Fig. 2. At the state preparation block, the single-photon
regime is achieved by heavily attenuating optical pulses
with well calibrated attenuators. An acousto-optical modu-
lator (AOM) placed at the output of a continuous-wave
laser operating at 690 nm is used to generate the optical
pulses. The average number of photons per pulse is set to
μ ¼ 0.4. In this case, the probability of having non-null
pulses is Pðn ≥ 1jμ ¼ 0.4Þ ¼ 33%. Pulses containing only
one photon are the majority of the non-null pulses
generated and accounts to 82% of the experimental runs.
Thus, our source is a good approximation to a nondeter-
ministic single-photon source, which is commonly adopted
in quantum communications [2].
The single-photons are then sent through two spatial light

modulators, SLM1 and SLM2, addressing an array of
32 × 32 transmissive squares. The square side is a ¼
96 μm and they are equally separated by δ ¼ 160 μm
[see Fig. 2(b)], thus, effectively creating a 1024-dimensional
quantum state defined in terms of the number of modes
available for the photon transmission over the SLMs [5,21–
23,33,34]. Specifically, the state of the transmitted photon is

given by jΨi ¼ ð1= ffiffiffiffi
C

p ÞPlNc
l¼−lNc

PlNr
v¼−lNr

ffiffiffiffiffi
tlv

p
e−iϕlv jclvi,

where jclvi is the logical state representing the photon
transmitted by the (l, v) square. tlv represents the

TABLE I. Relevant cases for a 1024-dimensional system and
the respective optimal ASPs [Eq. (1)] considering each product
structure. The full table can be found in the Supplemental
Material [39].

Case Optimal p̄

Q1024 0.515 625
Q512Q2 0.500 980
Q512C2 0.500 973
Q32Q32 0.500 521
ðQ2Þ10 0.500 493
Q2C512 0.500 489
C1024 0.500 488
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transmission and ϕlv the phase-shift given by the (l, v)
square. The transmission of each square is controlled by the
SLM1, which is configured for amplitude-only modulation.
The phases ϕlv are controlled by SLM2 working on the
configuration of phase-only modulation [22]. Nc and Nr
represent the number of columns and rows, respectively. For
simplicity, we define lNc

≡ ðNc − 1Þ=2, lNr
≡ ðNr − 1Þ=2,

and C is the normalization factor.
At the measurement block, we use a similar scheme to

the one used in the state preparation block. It consists of a
SLM3, also configured for phase-modulation, and a
“pointlike” avalanche single-photon detector (APD). As
explained in detail in [5,22], by placing the pointlike APD
at the SLM3 far-field (FF) plane, and properly adjusting the
(l, v) square phase shifts, Bob can detect any state jmy

ji
required for the 1024-dimensional QRAC session. The
pointlike APD is composed of a pinhole (aperture of 10 μm
diameter) fixed at the center of the FF plane, followed by
the APD module. In this case, the probability of photon
detection is proportional to the overlap between the
prepared and detected states. For the case of a d-dimen-
sional QRACs implemented with a single-detector scheme,
we show in the Supplemental Material (see [39] and
Refs. [4,5,9,13] therein) that the ASP function can be
written as

p̄ ¼ D1

D1 þD2

: ð3Þ

First, we consider the events with xy ¼ j (again, j ¼
1;…; 1024 denotes the state of a given base) and define
the total number of such events to be X1. Then, we define

D1 as the number of "clicks" recorded in the experiment in
those cases. Likewise, we denote X2 to be the number of
events where xy ≠ j and define D2 to be the clicks in
those cases.
By means of two field-programmable gate array (FPGA)

electronic modules, we are able to automate and actively
control both blocks of the setup. At the state preparation
block, since the state jΨi needs to be randomly selected
from the set of states defined by the 1024-dimensional
QRACs, a random number generator (QRNG-Quantis) is
connected to FPGA1. FPGA1 controls the optical pulse
production rate by the AOM, set at 60 Hz as limited by the
refresh rate of the SLMs. Each attenuated optical pulse
corresponds to an experimental round. At the measurement
block, a second QRNG is connected to FPGA2, providing
an independent and random selection for the projection
jmy

ji at each round. FPGA2 also records whether a
detection event occurs. The overall detection efficiency
is 13%. The protocol is executed as follows: In each round,
FPGA1 reads the dits x1 and x2 produced by its QRNG.
Then, FPGA1 calculates the amplitude and phase of each
(l, v) square of SLM1 and SLM2 to encode the state jΨx1x2i
onto the spatial profile of the single-photon in that
experimental round. Simultaneously, FPGA2, reads from
its QRNG the value of y and j. Similar to what is done in
the state preparation block, FPGA2 also calculates the
phase for each (l, v) square in SLM3 to implement the
chosen projection jmy

ji. The amplitude and relative phase
for each SLM was previously characterized in order to
obtain the modulation curves as a function of its grey level.
In this experiment, this is necessary to dynamically gen-
erate all possible states, as it would be unfeasible to
prerecord predefined masks for the SLMs on the FPGAs
for each one of the 10242 required initial states.
The experiment continuously ran over 316 hours. In this

way, the statistics fluctuations observed forD1 andD2 were
sufficiently small to unambiguously certify the generation
of an irreducible 1024-dimensional quantum system. The

FIG. 2. (a) Experimental setup. We employ a prepare-
and-measure scheme to generate and project spatial qudits,
encoded into the linear transverse momentum of single-photons.
At the state preparation block, the spatial encoding is applied
through two spatial light modulators (SLMs), and the state
projection is likewise performed by a SLM combined with a
pointlike avalanche single-photon detector (APD) at the meas-
urement projection block (see main text for details). (b) The
32 × 32-square mask addressed by the SLMs.

FIG. 3. Experimental results. We experimentally observe
p̄ ¼ 0.515� 0.008, violating the second highest ASP bound
p̄Q512⊗Q2

(see Table I). The error bar is calculated assuming
Poissonian statistics for a photon detection event.
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overall visibility in our system is 97.00� 0.07% and the
corresponding recorded average success probability is
p̄ ¼ 0.515� 0.008. In Fig. 3, we compare it with the
second highest ASP bound shown in Table I, associated
with a composite system of the type Q512Q2. This certifies,
only from the statistics recorded, that the generated state is
not encoded using noncoupled different degrees of freedom
of a photon, for instance polarization and momentum, thus,
ensuring it to be an irreducible 1024-dimensional quantum
system that can provide all the advantages known for high-
dimensional quantum information processing, in the sense
explained in [31].
Conclusion.—Dimension witnesses are practical proto-

cols on the field of quantum information as they allow one to
obtain information regarding unknown quantum states
[25,26]. They are especially appealing while addressing
the generation and characterization of high-dimensional
quantum states, where quantum tomography demands at
leastd2measurements [24]. In general,DWs are functions of
only a fewmeasurement outcome probabilities and allow for
assessments on the dimension required to describe a given
quantum state in a device-independent way [4,25–30]. Here,
we give a step further by introducing a new class of DW,
which certifies the dimension of the system, and has the new
distinct feature of allowing the identification of whether a
high-dimensional system is irreducible. The application of
this new feature is of broad relevance for several new
architectures aiming for high-dimensional quantum infor-
mation processing [4–16], and the understanding of macro-
scopic quantumness [3]. We demonstrate the practicability
of our technique by using it to certify the generation of an
irreducible 1024-dimensional photonic quantum state
encoded into the linear transverse momentum of single-
photons transmitted by programable diffractive apertures
which havebeen used for several high-dimensional quantum
information processing tasks [5,35,45–47].
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The supplemental material is organized into two sections: Theory (S1), and Experimental Considerations (S2).
The theoretical section makes all the formal definitions and provides the proofs of Theorem 1, Lemma 1, and Lemma 2 of

the main text. We further clarify Equation (1) of the main text, as well as showing the explicit form of the trade-off functions.
The theoretical section ends with two examples. In particular we calculate a table of all of the possible quantum partitions for
d = 1024 as direct proof that indeed: Q1024 > Q512Q2 > “all other partitions”. (Table S2)

The experimental section explicitly show the representation of the MUBs that were used in the experiment. We also formalize
the single-detector scheme, and explain how the figure of merit (Equation (3) of the main text) is derived. Finally, we show how
this figure of merit depends on the overall detection efficiency ν and average photon number per pulse µ.

S1. THEORY

S1.A. Formal Definitions and Problem Formulation

We begin by defining nd → 1 Random Access Codes (RACs) rigorously. RACs is a strategy in which Alice tries to compress
an n-dit string into 1 dit, such that Bob can recover any of the n dits with high probability [1]. Specifically, Alice receives an
input string x = x1x2 . . . xn drawn from a uniform distribution, where xi ∈ [d], with [d] = {1, 2, . . . , d}. Note that in the
special case of the main manuscript, we always use x = x1x2. She then uses an encoding function E : [d]n → [d], and is
allowed to send one dit ax = E(x) to Bob. On the other side, Bob receives an input y ∈ [n] (also uniformly distributed), and
together with Alice’s message ax uses one of n decoding functions Dy : [d] → [d], to output b = Dy(ax) as a guess for xy .
If Bob’s guess is correct (i.e. b = xy) then we say that they win, otherwise we say that they lose. We can then quantify their
probability of success P(Dy(E(x)) = xy), which in general depends on their inputs and on the chosen strategy (E ,D), where
D = {Dy}ny=1.

Similarly, one defines the d-dimensional nd → 1 Quantum Random Access Codes (QRACs) with the only change being that
Alice tries to compress her input string into a d-dimensional quantum system (see Fig.S1). Alice encodes her n-dit string via
E : [d]n → S(Cd), and sends the d-dimensional system ρx = E(x) to Bob. He then performs some decoding to output his guess
b ∈ [d] for xy . The decoding function is a quantum measurement followed by classical post-processing, as we clarify next.

Definition S1.1
A quantum decoding strategy is D =

{
{My

l }l,Dy
}n
y=1

, i.e. n pairs of measurement operators {My
l }l (normalized

∑
lM

y
l =

1 ∀y , and positive semi-definiteMy
l ≥ 0 ∀l, y), and classical post-processing functionsDy : [d]→ [d], such that if Bob receives

as input ρx and y, he outputs b = Dy(l) with probability tr[ρxM
y
l ].

To quantify the performance of a given encoding-decoding strategy, we shall employ the average success probability (ASP) p̄
as our figure of merit.

Definition S1.2
The Average Success Probability of a given encoding-decoding strategy (E ,D) is:

p̄ =
1

ndn

∑

x,y

P(B = xy|X = x, Y = y), (S1)

∗ These authors contributed equally to this work.
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FIG. S1: d-dimensional 2d → 1 QRACs scenario, which is the one considered in the main manuscript. Alice receives the input
dits x1 and x2 ∈ {1, . . . , d}, and prepares the state ρx1x2 which is sent to Bob. He receives the input y ∈ {1, 2}, which defines
the quantum measurement My and the classical post-processing function Dy to be applied to ρx1x2 . As a result, Bob outputs b.

where uppercase lettersX,Y,B denote random variables, while the corresponding lowercase letters represent the events (i.e. the
values the random variables can take). Another useful way of understanding the ASP is by viewing the whole QRAC protocol
as a game and thinking of the ASP as the probability that Alice and Bob win any given round. Loosely speaking:

p̄ = P(B = correct). (S2)

Nonetheless, the real object of interest is the optimal average success probability, which corresponds to the maximal value of p̄
taken over all possible encoding-decoding strategies. Explicitly:

p̄(C,Q)d = max
{E,D}

1

ndn

∑

x,y

P(B = xy|X = x, Y = y), (S3)

with C and Q respectively representing the classical and quantum scenarios.

Definition S1.3
For a fixed d, we define a product structure by the set

{
r, {dk}, {αk}

}
. For a composite system, d =

∏r
k=1 dk, where dk

is the dimension of each subsystem and r is the number of subsystems. The state of the composite system can be written as
ρ = ρ1

α1
⊗ ρ2

α2
⊗ · · · ⊗ ρrαr

. Here, αk = c and αk = q, are used to denote the “classical” and “quantum” nature of the
subsystem, respectively. Then, ρkc ∈ ∆dk−1 is a classical state, and ρkq ∈ S(Cdk) is a quantum state.

We are now in a position to formally pose the central question of this paper. Suppose Alice creates states of dimension d with
a certain product structure, i.e. she creates the state ρ = ρ1

α1
⊗ ρ2

α2
⊗ · · · ⊗ ρrαr

. When dealing with separable states, it is easier
to speak as if the information was encoded into distinct non-interacting physical systems. Of course it could equivalently be
the case that there is only one physical system with non-interacting degrees of freedom creating the abstract separable structure,
but for the sake of clarity we will keep the first picture in mind. This may be viewed as adding constraints to Alice’s possible
encoding functions E .

We must further assume the same constraints on Bob’s measurements. This might seem arbitrary, as we are only interested in
the nature of the prepared state. Nevertheless, one can argue that if e.g. Bob is allowed to perform “entangling” measurements,
this device might as well be located in Alice’s lab, allowing her to prepare an arbitrary entangled state which does not respect the
original constraints. That is, we are interested in the scenario where both Alice and Bob have the same technological equipment
at their disposal, as is the case in experiments [2]. We remark that this assumption was also used to prove robustness in [3].
Table S1 gives an example of different product structures if r ≤ 2.

Our main theorem states that the optimal ASPs of QRACs serve as a tool to differentiate these product structures. For
convenience we also restate it here.

Theorem 1 (Main theorem) d-dimensional 2d → 1 QRACs serve as gamut dimension witnesses using the ASP function.

The rest of this section is dedicated to proving Theorem 1.
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Case Constraints on E , and D

Qd1d2
Fully Quantum (No Constraints)

ρ ∈ S(Cd)

Qd1Qd2

Separable Quantum States
ρ = ρ1q ⊗ ρ2q

ρ1q ∈ S(Cd1) , ρ2q ∈ S(Cd2)

Qd1Cd2

Classical Quantum
ρ = ρ1q ⊗ ρ2c

ρ1q ∈ S(Cd1), ρ2c ∈ ∆d2−1

Cd1Qd2

Classical Quantum
ρ = ρ1c ⊗ ρ2q

ρ1c ∈ ∆d1−1, ρ2q ∈ S(Cd2)

Cd1d2
Classical

ρ ∈ ∆d1d2−1

TABLE S1: Example of Alice’s possible product structures, if the dimension d = d1d2 factorizes and r ≤ 2. We assume that
the measurement D has the same product structure as the encoding E .

S1.B. Proofs of Lemmas 1 & 2

We will show how to transform from the most general setup from Fig. S2(a), into the setup of Fig. S2(b). In order to do
this, we restrict the encoding function to only pure states (the optimality of which is demonstrated in Ref.[1]), the measurements
to be projectives (shown optimal for our case in [4]), and prove two lemmas that show that both (1) classical post-processing
functions, and (2) sequential adaptive strategies, are all unnecessary on Bob’s side. Note that these lemmas apply in the general
nd → 1 case.

(a) (b)

FIG. S2: (a) A generic QRAC with a product structure. (b) A simplified version using Lemmas 1,2.

The first simplification we make is to show that the optimal quantum strategy does not require classical post-processing
functions Dy . That is, Bob’s output b can simply be read out from his quantum measurements. This is typically assumed in all
QRAC papers (e.g. [1, 5]) but without proof.

Lemma 1
Given a quantum decoding strategy ({My

l }l,Dy) with average success probability p̄, there exists another quantum decoding
strategy ({M̃y

l }l, D̃y) with average success probability p̃ ≥ p̄ and with trivial classical post processing D̃y = id.

Proof of Lemma 1 Let ρx = E(x) be the states which achieve the optimal average success probability p̄. Then Eq (S1) can be
expressed as:

p̄ =
1

ndn

∑

x,y

tr


ρx

∑

k:Dy(k)=xy

My
k


 . (S4)
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Now, let us define new operators:

M̃y
k =

∑

j:Dy(j)=k

My
j . (S5)

We can now use the same encoding states ρx1,x2,...,xn
and write the original average success probability in terms of the new

operators:

p̄ =
1

ndn

∑

x,y

tr
[
ρxM̃

y
xy

]
. (S6)

Since we used a fixed encoding strategy and have a new decoding strategy, in principle we could have p̃ ≥ p̄ after further
optimization. Also, we see in Eq (S6) that there is no need for explicit classical post-processing (i.e. D̃y(k) = k). Thus,
hereafter, quantum decoding strategies will simply be written as {My

b }b, since they will directly output the guess b.

Therefore, the most general allowed measurement strategy is:

Definition S1.4
Assume that Bob receives r states from Alice: ρ = ρ1

α1
⊗ ρ2

α2
⊗ · · · ⊗ ρrαr

(in fact, by [1] these could be assumed to be pure
states), where each ρiαi

∈ S(Cdi) and d = d1d2 · · · dr. By Lemma 1, let the measurement outcome of ρiαi
be bi ∈ {1, 2, . . . , di}.

We call a sequential adaptive strategy any scheme where Bob uses previous measurement outputs to determine the measurement
basis of future states. That is, when measuring the state ρjαj

, the basis {My,b1,b2,...,bj−1

l }djl=1 could depend on the previously
measured systems.

This scenario is problematic, since optimizing sequential adaptive quantum strategies turns out to be extremely complicated
in general. One of our main technical contributions is to show that they are not necessary for optimality.

Lemma 2
There exists an optimal strategy that does not use sequential adaptive measurements.

Proof of Lemma 2 Let’s assume we have a strategy that uses sequential adaptive measurements. Fix the choice of all encoded
states and measurements. Then, we show that there exists a strategy without sequential adaptive measurements, that gives at
least as high average success probability, as the original one. To show this, let us write the average success probability for the
mentioned sequential adaptive strategy as:

p̄ =
1

2d2

∑

x,y

P(B1 = x1
y, B

2 = x2
y, · · · , Br = xry | X = x, Y = y)

=
1

2d2

∑

x,y

P(B1 = correct, B2 = correct, · · · , Br = correct | X = x, Y = y)

= P(B1 = correct, B2 = correct, · · · , Br = correct)

= P(Br = correct | Br−1 = correct, · · · , B1 = correct)P(Br−1 = correct, · · · , B1 = correct)

= . . . =
1∏

k=r

P(Bk = correct | Bk−1 = correct, · · · , B1 = correct),

(S7)

where we used the definition of conditional probability multiple times. By construction, Bk can only depend on such Bjs that
j < k. Now, we can use the fact, that the conditional probability is again a valid probability measure, thus we can apply
completeness of probabilities. Let us denote

∏m
k=r P(Bk = correct | Bk−1 = correct, · · · , B1 = correct) ≡ Pm. Then

p̄ = P3 · P(B2 = correct | B1 = correct)P(B1 = correct)

= P3
( d1∑

s=1

P(B2 = correct | B1 = correct, B1 = s)P(B1 = s | B1 = correct)
)
P(B1 = correct)

= P3
( d1∑

s=1

P(B2 = correct | B1 = correct, B1 = s)P(B1 = s,B1 = correct)
)
.

(S8)
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We see that the events (B1 = correct) and (B2 = correct) are independent when conditioning on the value of B1, i.e.

P(B2 = correct, B1 = correct | B1 = s)

= P(B1 = correct | B1 = s)P(B2 = correct | B1 = s),
(S9)

for any s ∈ {1, . . . , d1}. This is because if we condition on the value of B1, we fix all the states and measurements (remember
that the strategy is fixed, and the only freedom is in the choice of measurement basis on qudit 2 (see Fig. S2(b))). Then, since
our qudits are in a product state, their outcomes are independent.

From equation (S9) it follows that

P(B2 = correct | B1 = correct, B1 = s) = P(B2 = correct | B1 = s), (S10)

and thus

p̄ = P3
( d1∑

s=1

P(B2 = correct | B1 = s)P(B1 = s,B1 = correct)
)

≤ P3
( d1∑

s=1

P(B2 = correct)P(B1 = s,B1 = correct)
)

= P3 · P(B2 = correct)P(B1 = correct),

(S11)

where P(B2 = correct) = maxs∈{1,...,d1} P(B2 = correct | B1 = s), i.e. we choose the measurement basis which gives the
greatest success probability for qudit 2, hence eliminating adaptiveness on this qudit. Now, we use the same reasoning in order
to get rid of adaptiveness on consequtive qudits. We show that this indeed works on qudit 3, and then the idea generalizes
trivially. At this point, we have that

p̄ = P4 · P(B3 = correct | B2 = correct, B1 = correct)P(B2 = correct)P(B1 = correct)

= P4
( d2∑

s=1

d1∑

t=1

P(B3 = correct | B2 = correct, B1 = correct, B2 = s,B1 = t)

× P(B2 = s | B2 = correct)P(B1 = t | B1 = correct)
)
P(B2 = correct)P(B1 = correct)

= P4
( d2∑

s=1

d1∑

t=1

P(B3 = correct | B2 = correct, B1 = correct, B2 = s,B1 = t)

× P(B2 = s,B2 = correct)P(B1 = t, B1 = correct)
)

(S12)

(here, we implicitly used the already proven fact that qudits 1 and 2 are independent of each other). Now the conditional
independence goes as

P(B3 = correct, B2 = correct, B1 = correct | B2 = s,B1 = t)

= P(B3 = correct | B2 = s,B1 = t)P(B2 = correct, B1 = correct | B2 = s,B1 = t),
(S13)

since fixing all measurement bases yields independent outcomes. From this it follows that

P(B3 = correct | B2 = correct, B1 = correct, B2 = s,B1 = t) = P(B3 = correct | B2 = s,B1 = t), (S14)

and thus

p̄ = P4
( d2∑

s=1

d1∑

t=1

P(B3 = correct | B2 = s,B1 = t)P(B2 = s,B2 = correct)P(B1 = t, B1 = correct)

≤ P4
( d2∑

s=1

d1∑

t=1

P(B3 = correct)P(B2 = s,B2 = correct)P(B1 = t, B1 = correct)
)

= P4 · P(B3 = correct)P(B2 = correct)P(B1 = correct),

(S15)

where P(B3 = correct) = maxs∈{1,...,d2}
t∈{1,...,d1}

P(B3 = correct | B2 = s,B1 = t), meaning that we choose the measurement basis

that gives the greatest success probability on qudit 3. It is clear now that this reasoning applies for all qudits and thus

p̄ =
1∏

k=r

P(Bk = correct), (S16)

and it is a non-adaptive strategy.
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S1.C. Trade-Off Functions

The usefulness of non-adaptive strategies is that in essence, Alice and Bob are playing r QRACs in parallel (see Fig. S2(b)).
However, the optimal average success probability is not necessarily given by the independent optimal strategies on the individual
subspaces. This is easily understood when one remembers that the winning condition is that b = xy as a whole, and no “partial
points” are awarded if only a part of the string is guessed correctly. Before proceeding, it is illustrative to look at the ASP once
again, but written in the following way:

p̄ =
1

2

[
1

d2

(∑

x1,x2

P(B = x1|X = x1x2, Y = 1)

)
+

1

d2

(∑

x1,x2

P(B = x2|X = x1x2, Y = 2)

)]

=
1

2
[P(Bob correctly guesses x1) + P(Bob correctly guesses x2)] ,

(S17)

where we have defined P(Bob correctly guesses xy) as the average probability of success, if the y-th dit is asked. Let us remark
that these probabilities are not independent and are clearly strategy dependent. It is this first dependency that will be our object
of study:

Definition S1.5
Let z = P(Bob correctly guesses x1). Then we define the quantum trade-off functionMq

d(z) in dimension d as:

Mq
d(z) = max

(E,{My
l }l)
{P(Bob correctly guesses x2)|P(Bob correctly guesses x1) = z}, (S18)

where the maximization is limited to all quantum encoding-decoding strategies which respect the condition of guessing x1.

In fact, one could formally write the optimal ASP in terms of the trade-off function as:

p̄Qd
= max
z∈[ 1d ,1]

1

2
[z +Mq

d(z)] . (S19)

We will devote a later Lemma (3) to investigating the functional form of the quantumMq
d. For now, we return to the problem

of the r QRACs in parallel. When writing out the average success probability, we have to calculate the probability that Alice
and Bob win given inputs x1, x2, y. That is,

P(B = xy|X = x1x2, Y = y) = P(B1 = x1
y, B

2 = x2
y, . . . , B

r = xry|X = x1x2, Y = y)

=
r∏

k=1

P(Bk = xky |X = x1x2, Y = y).
(S20)

The first equality is just expanding the dits into r substrings (B = B1B2 . . . Br and xy = x1
yx

2
y . . . x

r
y). To obtain the second

equality, we use the fact that the QRACs are independent. According to Lemmas 1 and 2, Bob will use identity decoding on
each measurement and output b = b1b2 . . . br as a guess for xy . This in turn implies that the kth information carrier only has
information about xk1 and xk2 , i.e. P(Bk = xky |X = x1x2, Y = y) only depends on xk1 and xk2 .

Hence, let us define

P(Bob correctly guesses xky) =
1

(dk)2

∑

xk
1 ,x

k
2∈[dk]

P(Bk = xky |Xk = xk1x
k
2 , Y = y). (S21)

Then, Alice and Bob are trying to maximize the following global expression:

p̄Qd1
Qd2

...Qdr
= max
z1∈[ 1

d1
,1],z2∈[ 1

d2
,1],...,zr∈[ 1

dr
,1]

1

2

[
z1z2 . . . zr +Mq

d1
(z1)Mq

d2
(z2) . . .Mq

dr
(zr)

]
. (S22)

By optimizing (S22) , we are able to calculate the average success probability for separable states, and compare it to the
optimal average success probability of (S19). We now turn to showing the form ofMq

d(z).
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Lemma 3
The following are equivalent forms ofMq

d(z):

Mq
d(z) = 1−

(
d− 1

d

)(√
z −

√
1− z
d− 1

)2

, (S23)

Mq
d(z) = cos2

(
cos−1

(
1√
d

)
− cos−1

(√
z
))

. (S24)

Furthermore, they are achieved when Bob’s measurement bases are mutually unbiased.

Proof of Lemma 3 Let Bob’s decoding bases be {|ψk〉}k, and {|φk〉}k, corresponding to y = 1 and 2, respectively. Given
inputs x1, x2, Alice’s best strategy is to encode a superposition of |ψx1

〉 and |φx2
〉. Having any orthogonal components to these

states will drop her average success probability and hence those strategies will not appear in the maximization performed for
the trade-off function. Explicitly:

E(x) = |x〉 =
1√
N

(
t|ψx1

〉+ eiζ(1− t)|φx2
〉
)
, (S25)

where N = 1 + 2t(1 − t)
(
<[eiζ〈ψx1

|φx2
〉]− 1

)
is a normalization factor, t ∈ [0, 1] is a parameter that will vary to change

Bob’s probability of correctly guessing the first dit, and ζ ∈ [0, 2π) is a phase. It can be verified that ζ = −Arg(〈ψx1
|φx2
〉), i.e.

eiζ〈ψx1
|φx2
〉 ∈ R+ simultaneously maximizes both |〈ψx1

|x〉|2 and |〈φx2
|x〉|2, for all t ∈ [0, 1]. These are the probabilities of

Bob correctly guessing x1 and x2, respectively. With this choice of ζ then:

zx ≡ |〈ψx1
|x〉|2 =

(
t+
√
sx(1− t)

)2

N
, (S26)

|〈φx2
|x〉|2 =

(
t
√
sx + (1− t)

)2

N
, (S27)

where sx = |〈ψx1
|φx2
〉|2. Inverting equation (S26) to have t = t(zx, sx):

t =
−zx +

√
sx(
√
sx + zx − 1)±

√
(sx − 1)zx(zx − 1)

(
√
sx − 1)(

√
sx − 1 + 2zx)

. (S28)

Then, inserting it into (S27) we obtain the probability of correctly guessing the second dit, as a function of the probability of
correctly guessing the first (zx).

|〈φx2
|x〉|2 = (1− zx) + sx(2zx − 1)± 2

√
sx(sx − 1)zx(zx − 1). (S29)

We take the positive sign, since we want to maximize the average success probability. Hence, we are trying to maximize the
expression:

p̄ = max
{|ψk〉},{|φk〉}

1

2d2

∑

x

(
1 + sx(2zx − 1) + 2

√
sx(sx − 1)zx(zx − 1)

)
, (S30)

subject to the conditions 0 ≤ sx, zx ≤ 1,
∑
x sx = d, and

∑
x zx = zd2, where z = P(Bob correctly guesses x1).

The non-constant part of the above expression can be written as
∑
x f(sx, zx), where f(sx, zx) = sxzx +√

sx(1− sx)zx(1− zx). This sum is a function of the 2-by-d2 matrix S =
(
~sT

~zT

)
, where the x-th element of the vector ~s (~z)

is sx (zx). Note that for any matrix S satisfying the constraints on the sx and zx,

S∗ ≡
(

1
d

1
d . . . 1

d

z z . . . z

)
= S




1
d2 . . . 1

d2

...
...

1
d2 . . . 1

d2


 . (S31)

Here, the last matrix is doubly stochastic, and hence we say that any matrix S satisfying the constraints on the sx and zx
majorizes S∗ (see [6, Definition 15.A.2]). But this is equivalent ([6, Proposition 15.A.4]) to the statement that

∑
x φ(sx, zx) ≤
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∑
x φ( 1

d , z) for all continuous concave functions φ : R2 → R. It is straightforward to show that the function f(sx, zx) is
concave (i.e. its Hessian is negative semi-definite) on the domain [0, 1]× [0, 1], and hence, considering the above, the ASP (Eq.
(S30)) is maximized by sx = 1

d and zx = z for all x. Substituting these into Eq. (S29) we get the form of the trade-off function:

Mq
d (z) = 1− z +

2z − 1

d
+ 2

√
(d− 1)z(1− z)

d
, (S32)

which can be furthered simplified into (S23).
To obtain the other form ofMq

d(z) we can visualize the problem geometrically, by regarding the angle θ between two state
vectors |ξ〉 and |χ〉 to be θ = cos−1 (|〈ξ|χ〉|). We have shown that the trade-off function is obtained when Bob uses two mutually
unbiased bases, hence the measurement vectors |ψx1〉 and |φx2〉 have an angle of cos−1

(
d−1/2

)
between them. Alice’s encoded

state |x〉 must lie on the plane of the measurement vectors and the angle between |x〉 and |ψx1
〉 is cos−1 (

√
z). The trade-off

function (S24) is then obtained when we see that the angle between |x〉 and |φx2
〉 is the difference of the two angles described

above.

Notice that in the discussion following (S31) it was shown that sx = |〈ψx1 |φx2〉|2 = 1/d for all x. This is precisely the
MUB condition on Bob’s measurements. To arrive at Alice’s optimal strategy we need to maximize (S22), using the derived
representation (S24) ofMq

d(z). The maximization can easily done by setting dp̄Qd

dz = 0, to find zmax. Explicitly:

zmax =Mq
d(zmax) =

1

2

(
1 +

1√
d

)
. (S33)

This means that the best strategy for Alice is to encode every state |x〉 into an equal superposition of |ψx1〉 and |φx2〉 in order for
the success probability to be the same, no matter which basis Bob chooses to do a measurement in. We put this into a corollary:

Corollary 1 For 2d → 1 QRACs, the optimal average success probability is achieved when Bob uses two mutually unbiased
bases ({|ψx1

〉}x1
, {|φx2

〉}x2
), and Alice encodes her inputs into states |x1x2〉 which are equal superpositions of |ψx1

〉 and
|φx2
〉.

Note that this optimal quantum strategy for d-dimensional 2d → 1 QRACs has been discussed in [7]. The optimal encoding
strategy for Alice involves encoding her state into the eigenvector corresponding to the highest eigenvalue of the operator
(|ψx1〉〈ψx1 |+ |φx2〉〈φx2 |). This is the state given in Equation (2) of the main text.

For completeness, we also define the classical trade-off functionMc
d(z) in an analogous way to Definition S1.5, except that

the maximization is done over classical encoding-decoding strategies. In fact, this function is linear:

Mc
d(z) =

d+ 1

d
− z. (S34)

This can easily be checked, since the optimal success probability for 2d → 1 RACs is known to be p̄Cd
= (d + 1)/2d [8].

This success probability can be obtained by the pure coding schemes of just sending the first or second dit, and all convex
combinations of these strategies would give the same maximum. See Fig. S3 for a visualization of the trade-off functions with
varying dimensions. Note, however, that classical strategies factorize, so that we never use the trade-off functions in this setting
alone, but only in conjunction with the quantum functions, e.g. if Alice is able to encode her input dits into quantum systems of
dimensions d1, d2, . . . , dr−1 and the rest of the information of dimension dr classically, we would have to maximize:

p̄Qd1
Qd2

...Qdr−1
Cdr

= max
z1∈[ 1

d1
,1],...,zr∈[ 1

dr
,1]

1

2

[
z1z2 · · · zr +Mq

d1
(z1) · · ·Mq

dr−1
(zr−1)Mc

dr (zr)
]
. (S35)

S1.D. Two Examples

S1.D.I. d=39

Here, we take the case d = 39 into consideration, which will highlight the necessity of the trade-off functions. We have that
p̄Q39

= 1
2

(
1 + 1√

39

)
≈ 0.5801. Now, we wish to know the optimal ASP if the preparation and measurement are split in terms

of two systems with dimensions d1 = 13 and d2 = 3. Numerically we optimize (S22):

p̄Q13Q3 = max
z1∈[ 1

13 ,1],z2∈[ 13 ,1]

1

2

[
z1z2 +Mq

13(z1)Mq
3(z2)

]
≈ 0.5217. (S36)
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1

1

z

Mq
d(z)

1
d

d = 2
d = 8
d = 32
d = 512
classical

FIG. S3: Visualization of the quantum trade-off functionsMq
d(z), with varying dimensions.

A contour plot of of the function being maximized (S36) with the maxima highlighted can be seen in Fig. S4. In
fact, the maximum is obtained in two different points. Let (z1, z2) = (0.1944, 0.4302) be the first point, then in fact
(Mq

13(0.1944),Mq
3(0.4302)) = (0.9695, 0.9900) is the other point which achieves the maximum. The first point, where

both z1 and z2 are relatively small, the strategy gives a strong bias to guessing the second dit x2 at the expense of lowering the
probability of correctly guessing the first input x1. Explicitly for the first point; P(Bob correctly guesses x1) = z1z2 ≈ 0.0836,
whereas P(Bob correctly guesses x2) =Mq

13(z1)Mq
3(z2) ≈ 0.9598. It is clear then, that the second point which achieves the

maximum is just a reflection of this strategy, now giving a positive bias towards guessing the first dit.
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0.50

FIG. S4: Contour plot of (S36), for the example d = 39. See text for details.

To conclude, we explicitly see that p̄Q13Q3
> p̄Q13

p̄Q3
≈ 0.5037. That is, even though Alice and Bob are using two non-

interacting Hilbert spaces, the optimal strategy is a global one, instead of playing strictly independent QRACs.

S1.D.II. d=1024

Now, we look at the case d = 1024, the dimension we certify in our experiment. We compute the optimal success probabilities
for all possible quantum partitions of a 1024-dimensional quantum system. The values were calculated using Eq. (S35). The
aim here is to show that Q512Q2 was the relevant bound for the experiment, and not e.g. Q32Q32 or any other partition. See
Table S2.

Notice that, sinceMq
d(z) >Mc

d(z), there is no need to calculate the classical-quantum partitions, as they would clearly be
worse than the equivalent fully quantum partition. However, it is interesting to note that Q512C2 > Q256Q4.

S2. EXPERIMENTAL CONSIDERATIONS

In this section, we deal with the analysis supporting our photonic experiment in dimension d = 1024.
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S2.A. Useful Representation of the MUBs

From a theoretical point of view, any two mutually unbiased bases in dimension d = 1024 would yield the optimal average
success probability. However, in our optical setup, for simplicity it is better to consider a representation of the two MUBs which
have only matrix elements given by±1. Thus requiring only phase-modulations of 0 or π to be addressed by the SLMs to encode
and decode the required states. To construct such MUBs in dimension 1024, we first consider two MUBs in dimension 4:

MUBd=4
1 =

1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


 , (S37)

MUBd=4
2 =

1

2




1 −1 1 1

1 −1 −1 −1

1 1 1 −1

−1 −1 1 −1


 . (S38)

Now, if we consider the following tensor products:

MUB1 = (MUBd=4
1 )⊗5, MUB2 = (MUBd=4

2 )⊗5, (S39)

we end up with two MUBs in dimension 1024, where the columns represent the basis states.

S2.B. Single Detector Scheme

In our photonic experiment, we are dealing with a very large dimension (d = 1024). The protocol requires Bob to perform
a full von Neumann projective measurement on one of two bases before outputting his guess b. In the laboratory this would
translate to having 1024 different photo-detectors associated to each of the eigenvalues of the measurement performed, which
is practically impossible. However, one can simulate a full d-outcome projective measurement to overcome this limitation, as it
has been commonly done in the field of high-dimensional quantum information processing [9–12]. The basic idea is that Bob
uses a flexible detector scheme, which can project the incoming state to each one of the MUBs states required in the protocol.
Thus, estimating the probability for each basis state collapse individually with only one detector.

In this case, one uses an extra randomly uniform input j ∈ [d] on Bob’s side. Depending on his inputs y, j Bob will measure
the operators {|my

j 〉〈my
j |, 1 − |my

j 〉〈my
j |}. If Alice’s state collapses on |my

j 〉〈my
j |, i.e. a photon is recorded by Bob while the

scheme is set to make the projection |my
j 〉〈my

j |, he will claim that xy = j. Otherwise, he will assume that xy 6= j. A full von
Neumann measurement is simulated in the case that

∑

j∈[d]

|my
j 〉〈my

j | = 1, ∀y ∈ [n]. (S40)

Let us consider the events where xy = j and define the total number of such events X1. Let us also define D1 as the number
of ”clicks” from the experiment in those cases. Likewise, let X2 denote the number of events where xy 6= j, and D2 the clicks
in those cases. Assuming uniform sampling, (d− 1)X1 ≈ X2.

To get an appropriate figure of merit for the experiment in this scenario, consider first the total experimental efficiency:

ν :=
# real clicks

# theoretically expected clicks
. (S41)

Note that this efficiency does not assume anything about the inner-workings of the actual experimental setup, making it still
compatible with the device independent approach. Let q be the average success probability of a given strategy, then:

ν =
D1 +D2

qX1 +
(

1−q
d−1

)
X2

=
D1 +D2

X1
. (S42)

To calculate the number of theoretically expected clicks, we use the average failure probability
(

1−q
d−1

)
for simplicity, but without

loss of generality. Furthermore, note that the average success probability is the ratio of the times Bob correctly guessed xy = j,
to the number of times he should have guessed it to be xy = j:

D1

X1
= νq, (S43)
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Then, by combining equations (S42) and (S43), we obtain:

q =
D1

D1 +D2
, (S44)

which will be our main experimental figure of merit to calculate the average success probability q of the strategy. There are
several benefits of using (S44) : (1) It has an easy operational interpretation as “fraction of times Bob clicks correctly, compared
to the total number of clicks”, (2) since it only uses the data from the clicks, it is more experimentally friendly, not lowering the
statistics due to detector malfunction or lossy channels, (3) from how it was derived, it does not assume the inner workings of the
experiment, making it quite general, and most importantly (4) with the assumption of Eq. (S40), it is equivalent to the standard
form of the ASP, i.e., Eq. (S6).

S2.C. Robustness of the ASP to Detection Efficiency and Poissonian Source

In the previous section, we arrived at (S43) by assuming that there was only one photon present in each experimental round.
However, in our experimental setup we do not have a perfect single photon source, and multi-photon events can occur. The
problem with having more than one photon in the system, is that our detector does not resolve the number of detected photons
(otherwise this would not be an issue, and we would simply discard events with more than one photon). The nature of our
detection event, the so-called “click”, is in fact the probabilistic event “at least 1 photon detected”. Of course this event can be
understood as the complement of the event “no photon detected”. If we assume for a brief moment that ν = 1, and that there is
a n-photon event, the probability of having a “click“-event would be:

P(detecting at least 1 photon |n-photon event) = 1− (1− q)k. (S45)

Due to the nature of laser light formation, we consider a Poisson distribution for our photon production, with mean µ which
can be experimentally tuned. Now, we return to the case of having experimental efficiency ν. Imagine that there are n photons
with Alice’s state |Ψ〉 present, out of which only k collapse onto the correct state |Φ〉 during the measurement process, and then
each of the k photons have a ν probability of being detected. Hence, the probability of at least one click would be:

D1

X1
=

∞∑

n=1

P(n photons produced)

n∑

k=1

P(k of the n photons collapsing on |Φ〉| n-photon event))P(at aeast 1 detected). (S46)

This expression is fully general. We now explicitly introduce the Poissonian distribution:

D1

X1
=

∞∑

n=1

(
µne−µ

n!

) n∑

k=1

(
n

k

)
qk(1− q)n−k

(
1− (1− ν)k

)
. (S47)

To simplify matters, we look just at the inner summation to get:

n∑

k=1

(
n

k

)
qk(1− q)n−k

(
1− (1− ν)k

)
= 1− (1− νq)n. (S48)

Which is what we could have intuitively guessed since the beginning. If there are k photons present, then the probability to
detect at least 1 photon with a ν experimental efficiency is just 1 − (1 − νq)n. Then, putting (S48) into (S47) and carrying out
the sum we obtain:

D1

X1
= 1− e−νµq. (S49)

We note that while deriving this, we have been assuming the optimal QRAC strategy for the encoded states and measurement
operators. In particular, q does not depend on the inputs of Alice and Bob, (as shown in lemma 3), i.e. every round performs the
same as the average. In the same way, the average failing probability

(
1−q
d−1

)
will be modified as:

D2

X2
= 1− e−νµ( 1−q

d−1 ). (S50)
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Then, if we divide the rhs of (S44) by X1, and we use (S49) and (S50), we obtain:

D1

D1 +D2
=

1− e−νµq

1− e−νµq + (d− 1)
(

1− e−νµ( 1−q
d−1 )

) , (S51)

which relates the theoretical average success probability of the strategy q, to our experimental figure of merit. We interpret
this as follows: suppose Alice and Bob’s strategy predicts an average success probability of q, and we experimentally know the
value νµ. Then, equation (S51) gives the maximally allowed value of the figure of merit, assuming no other experimental errors.
Experimentally, this allows us to fine-tune the µ parameter, to be sure the Q512Q2 value can be violated.

The first order term of (S51) in the small parameter νµ (0.052 in our setup) is:

D1

D1 +D2
= q − 1

2

(
1− q
d− 1

)
q(dq − 1)νµ+O

(
(νµ)2

)
. (S52)
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Case Optimal p̄
Q1024 0.515625
Q512Q2 0.500980
Q256Q4 0.500654
Q256Q2Q2 0.500653
Q128Q8 0.500563
Q128Q4Q2 0.500561
Q128Q2Q2Q2 0.500560
Q64Q16 0.500530
Q64Q8Q2 0.500525
Q64Q4Q4 0.500524
Q64Q4Q2Q2 0.500523
Q64Q2Q2Q2Q2 0.500523

Q32Q32 0.500521
Q32Q16Q2 0.500512
Q32Q8Q4 0.500509
Q32Q8Q2Q2 0.500508
Q32Q4Q4Q2 0.500507
Q32Q4Q2Q2Q2 0.500507
Q32Q2Q2Q2Q2Q2 0.500506

Q16Q16Q4 0.500505
Q16Q16Q2Q2 0.500504
Q16Q8Q8 0.500503
Q16Q8Q4Q2 0.500501
Q16Q8Q2Q2Q2 0.500501
Q16Q4Q4Q4 0.500500
Q16Q4Q4Q2Q2 0.500500
Q16Q4Q2Q2Q2Q2 0.500499
Q16Q2Q2Q2Q2Q2Q2 0.500499

Q8Q8Q8Q2 0.500499
Q8Q8Q4Q4 0.500498
Q8Q8Q4Q2Q2 0.500498
Q8Q8Q2Q2Q2Q2 0.500497
Q8Q4Q4Q4Q2 0.500497
Q8Q4Q4Q2Q2Q2 0.500496
Q8Q4Q2Q2Q2Q2Q2 0.500496
Q8Q2Q2Q2Q2Q2Q2Q2 0.500495

Q4Q4Q4Q4Q4 0.500496
Q4Q4Q4Q4Q2Q2 0.500495
Q4Q4Q4Q2Q2Q2Q2 0.500495
Q4Q4Q2Q2Q2Q2Q2Q2 0.500494
Q4Q2Q2Q2Q2Q2Q2Q2Q2 0.500494
Q2Q2Q2Q2Q2Q2Q2Q2Q2Q2 0.500493

TABLE S2: All quantum cases for a 1024-dimensional system and the respective optimal ASPs considering each product
structure.
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Mutually unbiased bases (MUBs) constitute the canonical example of incompatible quantum measurements.
One standard application of MUBs is the task known as quantum random access code (QRAC), in which
classical information is encoded in a quantum system, and later part of it is recovered by performing a quantum
measurement. We analyze a specific class of QRACs, known as the 2d → 1 QRAC, in which two classical dits
are encoded in a d-dimensional quantum system. It is known that among rank-1 projective measurements MUBs
give the best performance. We show (for every d) that this cannot be improved by employing nonprojective
measurements. Moreover, we show that the optimal performance can only be achieved by measurements which
are rank-1 projective and mutually unbiased. In other words, the 2d → 1 QRAC is a self-test for a pair of MUBs
in the prepare-and-measure scenario. To make the self-testing statement robust we propose measures which
characterize how well a pair of (not necessarily projective) measurements satisfies the MUB conditions and
show how to estimate these measures from the observed performance. Similarly, we derive explicit bounds
on operational quantities like the incompatibility robustness or the amount of uncertainty generated by the
uncharacterized measurements. For low dimensions the robustness of our bounds is comparable to that of
currently available technology, which makes them relevant for existing experiments. Last, our results provide
essential support for a recently proposed method for solving the long-standing existence problem of MUBs.

DOI: 10.1103/PhysRevA.99.032316

I. INTRODUCTION

Mutually unbiased bases (MUBs) play an important role
in many quantum information processing tasks. They are
optimal for quantum state determination [1,2], information
locking [3,4], and the mean king’s problem [5,6]. Moreover,
they give rise to the strongest entropic uncertainty relations
(among projective measurements) [7–9]. One intuitive way
to look at them is the following: Imagine that we encode a
classical message in a pure state corresponding to an element
of a basis. If we measure this state in a basis unbiased
to the initial one, then each measurement outcome occurs
with the same probability. That is, we do not learn anything
about the originally encoded message. Formally, two bases
{|ai〉}d

i=1 and {|b j〉}d
j=1 in Cd are mutually unbiased if

|〈ai |b j〉|2 = 1

d
∀i, j ∈ [d] := {1, 2, . . . , d}. (1)

Due to their importance, significant effort has been ded-
icated to investigating their structure (see Ref. [10] for a
survey and Ref. [11] for a classification in dimensions 2–5).
It is known that in dimension d , there are at least 3 and
at most d + 1 MUBs and the upper bound is saturated in
prime power dimensions. The maximal number of MUBs in
composite dimensions is a long-standing open problem (see
Refs. [12–17] for the case of dimension 6).

*mate.farkas@phdstud.ug.edu.pl

Another scenario in which MUBs perform well is the so-
called 2d → 1 quantum random access code (QRAC) [18,19].
In this setup, two classical dits are encoded into a qudit,
and the aim is to recover one of them chosen uniformly at
random. It is well-known that sending a quantum system gives
an advantage over sending a classical system (of the same
dimension) [20] and this fact is used in many quantum in-
formation protocols [21–25]. It is commonly believed that the
optimal performance of the 2d → 1 QRAC is achieved when
the measurements correspond to a pair of MUBs in dimension
d , but this claim has only been proven for a restricted class of
measurements [26].

The observation that quantum systems can give rise
to stronger-than-classical correlations was first made by
Bell [27] (although in a slightly different setup). Moreover, it
turns out that some of these strongly nonclassical correlations
can be achieved in an essentially unique manner. That is, the
observed statistics allow us to identify the employed states
and measurements (up to local isometries and extra degrees
of freedom). The most prominent example of this kind is the
well-known CHSH inequality [28], which is maximally vio-
lated by a pair of MUBs in dimension 2 on both sides [29–32].
Whenever such an inference—characterizing the state and/or
measurements based solely on the observed statistics—can
be made, it is referred to as self-testing [33–35]. Self-testing
is closely related to the concept of device-independent (DI)
quantum information processing, in which the devices used
in the protocol are a priori untrusted [36–40]. It is clear
that what makes DI cryptography possible is precisely the
self-testing character of the correlations observed during the

2469-9926/2019/99(3)/032316(11) 032316-1 ©2019 American Physical Society
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FIG. 1. Schematic representation of the 2d → 1 QRAC protocol.

protocol. By now self-testing is a well-developed field [41–48]
and includes results which are robust to noise [49–55]. Such
statements are of particular interest, as they can be directly
applied to experiments [56].

Recently the notion of self-testing has been extended to
prepare-and-measure scenarios [57]. In this setup, a prepara-
tion device creates one of many possible quantum states and
then sends it to a measurement device. The latter performs
one of many possible measurements on the state, and then
produces a classical output. This scenario encompasses many
important quantum communication protocols, e.g., the BB84
and B92 quantum cryptography protocols [58,59] and the
aforementioned QRACs.

In the prepare-and-measure scenario one cannot distin-
guish between classical and quantum systems, unless addi-
tional restrictions are imposed. The standard choice is to place
an upper bound on the dimension of the system transmitted
between the devices [60–62]. This is often referred to as the
semi-device-independent (SDI) model for which several cryp-
tographic protocols have been proposed [63–65]. In analogy
to the DI model, it is clear that the security of SDI protocols
is related to self-testing results in the prepare-and-measure
scenario.

In this paper, we investigate the self-testing properties of
the 2d → 1 QRAC. In Ref. [57], the authors derive robust self-
testing results for d = 2 and ask whether similar statements
hold for larger d . We resolve this question by deriving a
robust self-testing statement for arbitrary d . We show that
the optimal performance in the 2d → 1 QRAC certifies that
the two measurements correspond to MUBs. To make the
statement robust we propose measures that characterize how
close a pair of POVMs is to the MUB arrangement and derive
explicit bounds on those in terms of the QRAC performance.
Finally, we use this characterization to obtain explicit bounds
on operationally relevant quantities like the incompatibility
robustness [66] or the amount of uncertainty produced.

II. SETUP

In the 2d → 1 QRAC scenario (see Fig. 1), on the prepara-
tion side Alice gets two uniformly random inputs, i, j ∈ [d].
Based on these inputs she prepares a d-dimensional state ρi j ,
and sends it to Bob who is on the measurement side. He gets
a uniformly random input y ∈ {1, 2}, which tells him which
of Alice’s inputs he is supposed to guess. If y = 1, he aims to
guess i, otherwise j. This is performed by a measurement on
ρi j , which we describe by the operators {Ai}i for y = 1, and
{Bj} j for y = 2, where Ai, Bj � 0,

∑
i Ai = ∑

j B j = I and
i, j ∈ [d]. The outcome of the measurement determines Bob’s

guess and the figure of merit is the average success probability
(ASP), which can be written, using the above notation, as

p̄ = 1

2d2

∑
i j

tr[ρi j (Ai + Bj )]. (2)

III. IDEAL SELF-TEST

To obtain the ideal self-testing statement we derive an
achievable upper bound on the ASP and identify situations
in which all the steps in the derivation are tight. Note that
tr [ρi j (Ai + Bj )] � ||Ai + Bj ||, where ||.|| is the operator norm,
and since (Ai + Bj ) � 0, one can always find a state ρi j

such that this inequality is saturated. Let us from now on
assume that the preparations are always chosen optimally,
which allows us to focus solely on the measurements. Finding
the maximal ASP can be performed using operator norm
inequalities and other tools from matrix analysis and yields
the following theorem.

Theorem 1. The average success probability of the 2d → 1
QRAC is upper bounded by

p̄ � 1

2

(
1 + 1√

d

)
=: p̄Q, (3)

and this bound can only be attained if Bob’s measurements
are rank-1 projective and mutually unbiased. Moreover, in the
optimal case the prepared states are the unique eigenstates of
Ai + Bj , corresponding to the highest eigenvalue.

It was previously known that this upper bound holds if we
restrict ourselves to rank-1 projective measurements and that
among these measurements only MUBs can actually achieve
it [26]. What we show is that the QRAC performance cannot
be improved by employing nonprojective measurements and
that the optimal performance indeed requires MUBs, even
if we allow for generic measurements. Note that this does
not follow from any extremality argument, as in general
projective measurements are not the only extremal d-outcome
measurements [67].

For a complete proof, we refer the reader to Appendix A.
Here, we state that the crucial step is to use operator norm
inequalities to show that the ASP is bounded by

p̄ � 1

2
+ 1

2d2

∑
i j

√
ti j, (4)

where ti j := tr(AiBj ) � 0, and therefore
∑

i j ti j = d . The
right-hand side is strictly Schur-concave in {ti j}i j , and hence is
uniquely maximized by the uniform distribution, ti j = 1

d [68],
which yields p̄Q. A separate argument implies that to reach p̄Q

both measurements must be rank-1 projective and combining
these two facts leads to the conclusion that the two measure-
ments correspond to MUBs.

Theorem 1 implies that the 2d → 1 QRAC is an SDI self-
test for a pair of MUBs in dimension d: observing the optimal
ASP implies that the two measurements constitute a pair of
MUBs. One might wonder whether the self-testing statement
can be made even stronger, in the sense of providing more
details about the measurements, but this is not possible. It is
easy to check that every pair of MUBs is capable of producing
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FIG. 2. Lower bound on the overlap entropy for
p̄∈ [ 1

2 + 1
2d

√
d
, p̄Q] in dimension 4.

the optimal ASP. This ideal self-test is crucial for the success
of the methods described in Ref. [26], as there it is essential
that the optimal QRAC ASP can only be obtained with an
arbitrary pair of MUBs.

IV. ROBUST SELF-TEST

Since in a real experiment one never observes the optimal
performance, the ideal self-testing result is not sufficient.
Instead, we need a robust self-testing statement, which tells us
what can be certified in the case of sub-optimal performance.

Inequality Eq. (4) implies that observing the optimal ASP
forces the distribution {ti j}i j to be uniform. For subopti-
mal performance we immediately get a bound on the 1

2 -
Rényi entropy (H 1

2
({qi}) = 2 log2 [

∑
i
√

qi]) of the distribu-
tion {ti j/d}i j , which we call the overlap entropy HS (A, B) :=
H 1

2
({ti j/d}i j ). More concretely, from Eq. (4) we deduce that

HS (A, B) � 2 log2[d
√

d (2 p̄ − 1)]. (5)

This bound is nontrivial as long as p̄ > 1
2 + 1

2d
√

d
and ob-

serving p̄ = p̄Q implies HS (A, B) = log2(d2), which is the
maximal value of the overlap entropy for a pair of POVMs.
For d = 4 the lower bound is plotted in Fig. 2.

Looking at the overlap entropy is not sufficient, because
the maximal value can be achieved by measurements which
are not MUBs, for instance, the trivial measurements corre-
sponding to Ai = Bj = I/d . The missing part is an argument
showing that the measurements are close to being rank-1 pro-
jective. For a d-outcome measurement {Ai}i acting on Cd this
property can be assessed by looking at the sum of the norms,
N (A) := ∑

i ||Ai||, since for all measurements N (A) � d and
the maximal value is attained if and only if the measurement
is rank-1 projective. Therefore, saturating N (A) = N (B) = d
and HS (A, B) = log2(d2) certifies the MUB arrangement.

To obtain a bound on N (A) we need a stronger version of
Eq. (4). In Appendix B we show that

p̄ � 1

2
+ 1

2d2

∑
i j

[si j − (2 −
√

2)si jni j], (6)

where ni j := 1 − 1
2 (||Ai|| + ||Bj ||) and si j := ||√Ai

√
Bj ||. This

bound reduces to Eq. (4) if we omit the negative term and

FIG. 3. Lower bound on the sum of the norms for p̄ ∈ ( p̄0, p̄Q]
in dimension 4.

bound si j by
√

ti j , which constitutes an alternative derivation
of Theorem 1 (as ni j = 0 for all i, j implies that both mea-
surements are rank-1 projective).

The important feature of Eq. (6) is that it allows us to lower
bound the sum of the norms. In Appendix B we show that for
p̄ > p̄0 := 1

2 + 1
2d2

√
(d2 − 1)d we have

N (A) � d − 2 + √
2

d
[1 −

√
d3(2 p̄ − 1)2 − (d2 − 1)], (7)

and by symmetry the same bound holds for N (B). It is easy to
check that for p̄ = p̄Q, the right-hand side evaluates to d , i.e.,
the optimal performance certifies that both measurements are
rank-1 projective. The lower bound given in Eq. (7) is plotted
for d = 4 in Fig. 3.

Since Eqs. (7) and (5) allow us to robustly certify the
two defining properties of MUBs (rank-1 projectivity and
uniformity of overlaps, respectively), combining them yields
a robust self-test for MUBs. Note that the robustness is limited
by Eq. (7) which requires that p̄ > p̄0.

V. OPERATIONAL BOUNDS

In the previous paragraph we have focused on quantities
tailored to certify closeness to the MUB arrangement. Let us
now show that a similar approach can be used to derive bounds
on quantities which have an immediate operational meaning.

We begin with the incompatibility robustness. We say
that two POVMs {Ai}i and {Bj} j are compatible (or jointly
measurable) if there exists a parent POVM {Mi j}i j , such that∑

j Mi j = Ai and
∑

i Mi j = Bj for all i, j. Otherwise, they
are incompatible, which is often taken as the definition of
nonclassicality. To quantify incompatibility beyond this bi-
nary characterization, the notion of incompatibility robustness
has been introduced [66]. Consider the noisy POVMs, Aη

i =
ηAi + (1 − η) tr Ai I/d , and similarly Bη

j . The incompatibility
robustness η∗ of A and B is defined as the largest η such that
{Aη

i }i and {Bη
j } j are compatible. According to this measure

MUBs are highly incompatible, but, perhaps surprisingly,
they are not the most incompatible among rank-1 projective
measurements in dimension d [69].

Recently an analytic upper bound on η∗ has been derived
for an arbitrary set of POVMs [70]. For a pair of POVMs the
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FIG. 4. Upper bound on the incompatibility robustness over the
nontrivial region in dimension 4.

bound reads

η∗ �
d2 maxi j ||Ai + Bj || − ∑

i(tr Ai )2 − ∑
j (tr Bj )2

d
∑

i tr A2
i + d

∑
j tr B2

j − ∑
i(tr Ai )2 − ∑

j (tr Bj )2
.

(8)

All the quantities appearing in this expression can be bounded
using the previously developed methods, which leads to a
bound which depends only on the observed performance p̄.
Since the final bound is rather complex, we do not present it
here and refer the interested reader to Appendix C. The impor-
tant feature of the bound is that for the optimal performance
p̄ = p̄Q we recover the correct value of the incompatibility

robustness for a pair of MUBs, i.e., η∗ =
√

d/2+1√
d+1

. In Fig. 4 we
plot the bound for d = 4 over the region where it is nontrivial.

We note here that similar bounds can be derived for other
measures of incompatibility robustness using the same tech-
niques. Among these is a measure that uses arbitrary POVMs
as noise [71], for which MUBs are the most incompatible pair
of POVMs (of any number of outcomes) in dimension d [72].
This can also be certified by observing p̄ = p̄Q.

The second operational quantity we consider is the amount
of randomness produced by the uncharacterized measure-
ments. For a POVM A, let H (A)ρ := H ({ tr(Aiρ)}i ) be the
Shannon entropy of the outcome statistics of A on the state ρ.
Maassen and Uffink derived a state-independent lower bound
on H (A)ρ + H (B)ρ for rank-1 projective measurements [7].
For our purposes we need a more general statement which
covers nonprojective measurements. Such a bound has been
derived in Ref. [73] and reads

H (A)ρ + H (B)ρ � − log2 c, (9)

where c := maxi j ||
√

Ai
√

Bj ||2. Therefore, we need an upper
bound on si j and such a bound has already been derived in
Appendix B. The final statement reads

H (A)ρ + H (B)ρ

� −2 log2

(
2 p̄ − 1 + 1

d

√
d (d2 − 1)[1 − d (2 p̄ − 1)2]

)
.

(10)

FIG. 5. Lower bound on the entropic uncertainty over the non-
trivial region in dimension 4.

The optimal performance certifies log2 d bits of randomness,
which is the maximal value for a pair of projective measure-
ments. We plot the above bound for d = 4 over the region
where it is nontrivial in Fig. 5.

We note that a similar bound can be derived for the
one-shot analog of the Shannon entropy, the min-entropy
Hmin (which coincides with the ∞-Rényi entropy), which is
often preferred in cryptographic scenarios. It was shown in
Ref. [74] that for a pair of POVMs, Hmin(A)ρ + Hmin(B)ρ �
− log2 ( 1+√

c
2 ), for which we can derive a similar bound to that

of Eq. (10).

VI. SUMMARY AND OUTLOOK

We have shown that the 2d → 1 QRAC constitutes a
robust self-test for MUBs in arbitrary dimension. Observing
sufficiently high ASP allows us to deduce that the employed
measurements are close to being rank-1 projective and that
their overlaps are close to being uniform. The same approach
can be used to bound operationally relevant quantities like
the incompatibility robustness or the amount of randomness
produced. For low dimensions the robustness of our bounds
makes them interesting from the experimental point of view.

The most obvious direction for further research is to use
our self-testing results to prove SDI security of prepare-and-
measure quantum key distribution using high-dimensional
systems. One of the main components of the SDI security
proof given in Ref. [63] is the relation between the observed
QRAC performance and the randomness produced for d = 2
(qubits). In this work we derive precisely such relations for
arbitrary d and we believe that one can use them directly in
security proofs.

There is an important difference between SDI self-testing
and DI self-testing. In the usual DI self-testing we certify
systems up to local isometries and extra degrees of freedom.
Since the second equivalence is not relevant in the SDI setup
(the dimension of the system is fixed), one might expect that
SDI self-testing should characterize the measurements up to
a unitary transformation. However, this is generally not the
case: While in some dimensions all pairs of MUBs are equiv-
alent up to unitaries (and possibly complex conjugation), e.g.,
d = 2, 3, 5, there are dimensions where this is not the case,
e.g., d = 4 [11]. It is natural to ask whether these inequivalent
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classes of MUBs can be distinguished by considering more
complex QRACs. In fact, a related version of this question
appears readily if we consider nd → 1 QRACs with n > 2.
In this case it is known that different classes of n-tuples of
MUBs perform differently [26,75]. Numerical evidence for
n = 3 and low d suggests that the optimal performance is
achieved by one of these classes, so one might conjecture
that such QRACs self-test this particular class. Again, it is not
clear how to certify the remaining classes.

The 2d → 1 QRAC analyzed in this paper is closely
related, at least in spirit, to the family of Bell inequali-
ties proposed by Bechmann-Pasquinucci and Gisin [76]. We
hope that the understanding gained in this work will help
us to prove self-testing statements for those inequalities. It
would be particularly interesting to see whether the need for
“more-than-unitary” freedom can also appear in the standard
nonlocality-based self-testing.
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APPENDIX A: IDEAL SELF-TEST

In the main text, we establish that the QRAC ASP can be
upper bounded by

p̄ � 1

2d2

∑
i j

||Ai + Bj ||, (A1)

and this can always be saturated by suitable states ρi j on the
preparation side. To bound the above quantity, we use a spe-
cial case of a matrix norm inequality derived by Kittaneh [77],
applied to the square-root function and the operator norm.
For further purposes, we briefly reproduce the proof here as
well. We will make use of the fact that for operators A, B on a
Hilbert space, ||A ⊕ B|| = max{||A||, ||B||} [78].

Theorem 2. Let A, B � 0 be operators on a Hilbert space.
Then ||A + B|| � max{||A||, ||B||} + ||√A

√
B||.

Proof. Consider the block-operator

X =
(√

A√
B

)
, and thus X †X = A + B. (A2)

Therefore,

||A + B|| = ||X †X || = ||XX †|| =
∣∣∣∣
∣∣∣∣
(

A
√

A
√

B√
B
√

A B

)∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
(

A 0
0 B

)
+

(
0

√
A
√

B√
B
√

A 0

)∣∣∣∣
∣∣∣∣

�
∣∣∣∣
∣∣∣∣
(

A 0
0 B

)∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣
(

0
√

A
√

B√
B
√

A 0

)∣∣∣∣
∣∣∣∣

= max{||A||, ||B||} + ||
√

A
√

B||, (A3)

where we used some basic properties of the operator norm
(see, e.g., Ref. [78]; or Ref. [77] for a more detailed and
general version of the proof).

Using the above theorem, we get

p̄ � 1

2d2

∑
i j

(max{||Ai||, ||Bj ||} + ||√Ai

√
Bj ||). (A4)

From
∑

i Ai = ∑
j B j = I it follows that Ai, Bj � I, and thus

||Ai||, ||Bj || � 1. Then

p̄ � 1

2d2

∑
i j

(1 + ||√Ai

√
Bj ||) = 1

2
+ 1

2d2

∑
i j

||√Ai

√
Bj ||.

(A5)

Now we use the fact that for any operator O, ||O|| � ||O||F ,
where ||O||F :=

√
tr(O†O) is the Frobenius norm [78]. There-

fore,

p̄ � 1

2
+ 1

2d2

∑
i j

||√Ai

√
Bj ||F = 1

2
+ 1

2d2

∑
i j

√
tr(AiBj ).

(A6)

Recall that ti j := tr(AiBj ) and, therefore, ti j � 0 and
∑

i j ti j =
d . The right-hand side of Eq. (A6) is a symmetric and strictly
concave function of the ti j , and as such, it is strictly Schur-
concave (see, e.g., Ref. [68]). Therefore, it is maximized
uniquely by setting all the ti j uniform, ti j = 1

d for all i, j ∈ [d].
The upper bound on the ASP set by such ti j is then

p̄ � 1

2
+ 1

2d2

∑
i j

1√
d

= 1

2

(
1 + 1√

d

)
. (A7)

Note that this bound is saturated by measuring in MUBs (see
also Ref. [26]).

Now, let us turn our attention to necessary conditions for
saturating the above bound. We first show that at least one
of the measurements must be rank-1 projective to reach the
optimal ASP. Saturating the upper bound requires tr(AiBj ) =
1
d for all i, j ∈ [d] and by summing over one of the in-
dices, we see that tr Ai = tr Bj = 1 for all i, j. Investigating
the chain of inequalities obtained above, it is necessary for
optimality that max{||Ai||, ||Bj ||} = 1 for all i, j ∈ [d]; oth-

erwise, p̄ < 1
2d2

∑
i j (1 + ||√Ai

√
Bj ||) � 1

2 (1 + 1√
d

). Assume
that there exists a j∗ such that ||Bj∗ || < 1. Then to ful-
fill max{||Ai||, ||Bj∗ ||} = 1 for all i ∈ [d], it is necessary that
||Ai|| = 1 for all i ∈ [d]. Since these operators must all be
trace-1 and positive semidefinite, it follows that Ai = |ai〉〈ai |
for all i ∈ [d]. If there is no such j∗, then ||Bj || = 1 for all
j ∈ [d], and we arrive at an analogous condition for Bj . Thus,
without loss of generality we can assume that Ai = |ai〉〈ai | for
all i ∈ [d].

The rest of this Appendix is dedicated to showing that
the other measurement must also be rank-1 projective. Let
us analyze the inequality derived by Kittaneh and to do
so, we first recall a few definitions from matrix analysis.
We denote by L(H) the algebra of linear operators on the
Hilbert space H, and by ||.||H the Hilbert space norm. The
numerical range of an operator O is W (O) := {〈x |Ox〉|||x||H =
1}, while the numerical radius is w(O) := sup||x||H=1 |〈x |Ox〉|.
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By construction every complex number c ∈ W (O) satisfies
|c| � w(O) and we always have w(O) � ||O|| [78].

In Theorem 2, the inequality comes from the triangle
inequality and to investigate when this holds as an equality
we use a result by Barraa and Boumazgour [79].

Theorem 3. Let S, T ∈ L(H) be nonzero. Then the equa-
tion ||S + T || = ||S|| + ||T || holds if and only if ||S||||T || ∈
W (S†T ).

For a finite-dimensional Hilbert space the numerical range
is always closed [78], thus in our case the closure in the
theorem is redundant. It is immediate to see that a nec-
essary condition for the operators S and T to saturate the
triangle inequality is that ||S||||T || � w(S†T ). However, from
the submultiplicativity of the operator norm, we know that
w(S†T ) � ||S†T || � ||S†||||T || = ||S||||T ||, and hence this con-
dition is equivalent to w(S†T ) = ||S||||T ||.

We will also use the following bound on the numerical
radius, obtained by Kittaneh [80].

Theorem 4. If O ∈ L(H), then

[w(O)]2 � 1
2 ||O†O + OO†||. (A8)

We are now ready to derive a necessary condition to
saturate Kittaneh’s inequality in Theorem 2.

Lemma 5. Let A, B � 0 be operators on a Hilbert space.
Then, the equality ||A + B|| = max{||A||, ||B||} + ||√A

√
B||

holds only if ||A|| = ||B||.
Proof. Let us denote the block-operators appearing in the

proof of Theorem 2 by

S =
(

A 0
0 B

)
= S†, T =

(
0

√
A
√

B√
B
√

A 0

)
= T †.

(A9)

Then, following from Theorem 3 and the discussion below it,
a necessary condition for A, B � 0 to saturate Kittaneh’s in-
equality is that w(ST ) = ||S||||T || = max{||A||, ||B||}||√A

√
B||.

Applying Theorem 4 to ST , we get that

(ST )†ST =
(√

AB3
√

A 0
0

√
BA3

√
B

)
,

ST (ST )† =
(

A
3
2 BA

3
2 0

0 B
3
2 AB

3
2

)
, (A10)

and hence

(w(ST ))2 � 1

2
max

{∣∣∣∣√AB3
√

A + A
3
2 BA

3
2
∣∣∣∣, ∣∣∣∣√BA3

√
B + B

3
2 AB

3
2
∣∣∣∣}

� 1

2
max

{||√AB3
√

A|| + ∣∣∣∣A 3
2 BA

3
2
∣∣∣∣, ||√BA3

√
B|| + ∣∣∣∣B 3

2 AB
3
2
∣∣∣∣}

= 1

2
max

{∣∣∣∣√AB
3
2
∣∣∣∣2 + ∣∣∣∣A 3

2

√
B
∣∣∣∣2

,
∣∣∣∣A 3

2

√
B
∣∣∣∣2 + ∣∣∣∣√AB

3
2
∣∣∣∣2}

= 1

2

(∣∣∣∣A 3
2

√
B
∣∣∣∣2 + ∣∣∣∣√AB

3
2
∣∣∣∣2) � 1

2
(||A||2 + ||B||2)||

√
A
√

B||2

� max{||A||2, ||B||2}||
√

A
√

B||2. (A11)

Here, in the second line, we used the triangle inequal-
ity, in the third line the identity ||O||2 = ||O†O|| and in the
fourth line submultiplicativity. The last inequality is trivial,
and is only saturated if ||A|| = ||B||. Therefore, ||A + B|| =
max{||A||, ||B||} + ||√A

√
B|| only if ||A|| = ||B||.

This lemma shows that saturating the upper bound on the
ASP implies that ||Bj || = ||Ai|| = 1 for all i, j ∈ [d]. It was
also necessary that tr Bj = 1, and therefore (similarly to the
Ai), Bj = |b j〉〈b j | for all j ∈ [d], and both measurements
must be rank-1 projective. From here, it follows immediately
from the condition tr(AiBj ) = 1

d , that the bases defining the
measurements must be mutually unbiased.

APPENDIX B: ROBUST SELF-TEST

While it is clear what it means for two measurements to be
exactly mutually unbiased, there are multiple ways of turning
this definition into an approximate statement (particularly if
we allow for nonprojective measurements). For our purposes
it is natural to split the definition of MUBs into two standalone
conditions and consider them separately.

The first condition, which is usually implicit in the def-
inition of MUBs, is that both measurements are projective

and that the measurement operators are rank-1. Let {Ai}i be
a d-outcome measurement on a d-dimensional system and let
us consider the sum of the norms, N (A) := ∑

i ||Ai||. This is a
suitable quantity, because

N (A) =
∑

i

||Ai|| �
∑

i

tr Ai = d,

and since ||Ai|| � 1, the maximum is achieved iff every mea-
surement operator is a rank-1 projector. Therefore, the differ-
ence between

∑
i ||Ai|| and the maximal value d tells us how

much {Ai}i deviates from being rank-1 projective.
The second condition, often referred to as the MUB condi-

tion, requires that the overlap between every pair of measure-
ment operators is the same. The question here is how to gener-
alize the overlap to nonprojective measurements. The quantity√

tr(AiBj ) discussed in the main text is a valid generalisation
of the overlap in the sense that it reduces to the overlap
for rank-1 projective measurements. However, the argument
given below naturally leads to a different quantity, namely
||√Ai

√
Bj ||. Note that this is a commonly used definition of

the overlap, e.g., in the context of uncertainty relations.
The main purpose of this Appendix is to derive a lower

bound on N (A) as a function of the observed performance.
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However, to do that, we must first derive explicit bounds on
the range of ||√Ai

√
Bj ||.

In our argument we use the following technical lemma.
Lemma 6. The function

h(x, y) := x + y − αxy −
√

x2 + y2

for α := 2 − √
2 satisfies h(x, y) � 0 for x, y ∈ [0, 1].

Proof. If we express x and y in terms of the polar coordi-
nates

x = r cos(θ − π/4),

y = r sin(θ − π/4),

the function becomes

h(r, θ ) = r[cos(θ − π/4) + sin(θ − π/4) − 1]

− αr2

2
sin[2(θ − π/4)] = r(

√
2 sin θ − 1)

+αr2

2
cos 2θ.

To cover the square x, y ∈ [0, 1] we prove the statement for
r ∈ [0,

√
2] and θ ∈ [π/4, 3π/4]. For fixed θ the function

h(r, θ ) is a quadratic function of r and the coefficient of the
quadratic term is nonpositive. This means that to determine
the minimum value, it suffices to consider the extreme points,
i.e., r = 0 and r = √

2. Since h(0, θ ) = 0, we only have to
look at the latter. We have

h(
√

2, θ ) = 2 sin θ −
√

2 + α cos 2θ

= −2α sin2θ + 2 sin θ + 2 − 2
√

2

= 2α(1 − sin θ )

(
sin θ − 1√

2

)
,

and it is easy to see that for θ ∈ [π/4, 3π/4] each term is
nonnegative.

Moreover, we use the following operator norm inequality
derived by Kittaneh [81].

Theorem 7. For positive semidefinite operators A and B
acting on a finite-dimensional Hilbert space we have

||A + B|| � 1

2
(||A|| + ||B|| +

√
(||A|| − ||B||)2 + 4||

√
A
√

B||2).

(B1)

In our argument A and B will be particular measurement
operators from the two measurements. We define the general-
ized overlap between Ai and Bj as

si j := ||√Ai

√
Bj || ∈ [0, 1].

Another relevant quantity of a pair of measurement operators
is the norm deficiency defined as

ni j := 1 − (||Ai|| + ||Bj ||)/2 ∈ [0, 1].

It is easy to see that if ni j = 0 for all i, j, we have∑
i

||Ai|| =
∑

j

||Bj || = d,

i.e., both measurements are rank-1 projective. Our goal now
is to relate the right-hand side of Eq. (B1) to si j and ni j . First,

note that

||Ai|| − ||Bj || = 2||Ai|| − (||Ai|| + ||Bj ||)
� 2 − 2(1 − ni j ) = 2ni j

and similarly

||Bj || − ||Ai|| � 2ni j .

These two inequalities imply that

(||Ai|| − ||Bj ||)2 � 4n2
i j,

and plugging this back into Eq. (B1) gives

||Ai + Bj || � 1 − ni j +
√

n2
i j + s2

i j .

Applying the inequality derived in Lemma 6 to si j and ni j

gives

||Ai + Bj || � 1 + si j − αsi jni j,

where α = 2 − √
2. Applying this upper bound to Eq. (A1)

immediately yields

p̄ � 1

2d2

∑
i j

(1 + si j − αsi jni j )

= 1

2
+ 1

2d2

∑
i j

si j − α

2d2

∑
i j

si jni j . (B2)

Let us first bound the range of si j , i.e., find explicit functions
of p̄ denoted by smin and smax such that

si j ∈ [smin, smax]

for all i, j. To do this we drop the last term in Eq. (B2) to
obtain

p̄ � 1

2
+ 1

2d2

∑
i j

si j .

To bound the sum of si j we bound the operator norm by the
Frobenius norm:

si j = ||√Ai

√
Bj || � ||√Ai

√
Bj ||F = √

tr(AiBj ) = √
ti j

and finally use the normalization condition
∑

i j ti j = d . Let us
now separate one term from the rest of the sum. For simplicity
we choose the first term, i.e., s11, but by symmetry the same
argument applies to every si j . We obtain

p̄ � 1

2
+ 1

2d2

⎛
⎝s11 +

∑
i j �=11

si j

⎞
⎠

� 1

2
+ 1

2d2

⎛
⎝s11 +

∑
i j �=11

√
ti j

⎞
⎠. (B3)

Since the remaining sum contains d2 − 1 terms, concavity of
the square root implies that

∑
i j �=11

1

d2 − 1

√
ti j �

√∑
i j �=11 ti j

d2 − 1
=

√
d − t11

d2 − 1
�

√
d − s2

11

d2 − 1
,
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where in the last step we used the fact that s11 � √
t11.

Plugging this bound into Eq. (B3) gives

p̄ � 1

2
+ 1

2d2

[
s11 +

√
(d2 − 1)

(
d − s2

11

)] =: f (s11).

Computing the derivative of f shows that f is increasing for
s11 < 1/

√
d and decreasing for s11 > 1/

√
d . The maximum

achieved for s11 = 1/
√

d corresponds to the optimal ASP.
This implies that the lowest and highest values of s11 com-
patible with the observed p̄ can be determined by computing
the two solutions of the equality

p̄ = 1

2
+ 1

2d2

[
s11 +

√
(d2 − 1)

(
d − s2

11

)]
.

This reduces to solving a quadratic equation and finally we
deduce that s11 ∈ [smin, smax], where

smin := 2 p̄ − 1 − 1

d

√
d (d2 − 1)[1 − d (2 p̄ − 1)2], (B4)

smax := 2 p̄ − 1 + 1

d

√
d (d2 − 1)[1 − d (2 p̄ − 1)2]. (B5)

The optimal performance, i.e. p̄ = 1
2 + 1

2
√

d
, implies that

smin = smax = 1√
d

. Moreover, since both functions are contin-
uous in p̄, for sufficiently good performance we obtain bounds
stronger than the trivial s11 � 0 and s11 � 1. This concludes
the first part of the argument, i.e., providing explicit bounds
on the range of the generalized overlaps.

For the second part of the argument, in which we show
that the measurements are close to being rank-1 projective, we
need all the overlaps to be bounded away from 0, i.e., smin > 0.
According to Eq. (B4) this is guaranteed as long as p̄ > p̄0 for

p̄0 := 1

2
+ 1

2d2

√
(d2 − 1)d.

Using the concavity result while keeping the negative term in
Eq. (B2) leads to

p̄ � 1

2
+ 1

2d2

(
s11 +

√
(d2 − 1)

(
d − s2

11

)) − α

2d2

∑
i j

si jni j .

Without loss of generality we can assume that s11 is the
smallest overlap and then

p̄ � 1

2
+ 1

2d2

(
s11 +

√
(d2 − 1)

(
d − s2

11

)) − αs11

2d2

∑
i j

ni j,

which is equivalent to∑
i j

ni j � 1

αs11

[
s11 +

√
(d2 − 1)

(
d − s2

11

) − d2(2 p̄ − 1)
]
.

(B6)
To analyze the right-hand side, we define

g(x) := 1 +
√

(d2 − 1)

(
d

x2
− 1

)
− d2(2 p̄ − 1)

x
,

and now our goal is to maximize g(x) over x ∈ [0, 1/
√

d],
as smin � 1/

√
d . Recall that we work under the assumption

that p̄ > p̄0 and therefore 2 p̄ − 1 > 0. We can analytically

compute the derivative dg/dx and set it to 0 to conclude that
the only stationary point corresponds to

x∗ :=
√

d3(2 p̄ − 1)2 − (d2 − 1)

d (2 p̄ − 1)
=

√
d − d2 − 1

d2(2 p̄ − 1)2
.

Evaluating the second derivative d2g/dx2 at x∗ tells us that
this is a maximum and since this is the only stationary point,
it must be the unique maximizer in the interval [0, 1/

√
d].

Therefore, in Eq. (B6) we can set s11 = x∗ to obtain∑
i j

ni j � 1

α
[1 −

√
d3(2 p̄ − 1)2 − (d2 − 1)].

Finally, we can use this bound to obtain lower bounds on the
sums of the norms

∑
i ||Ai|| and

∑
j ||Bj || for the individual

measurements. Since

∑
i j

ni j = d2 − d

2

⎛
⎝∑

i

||Ai|| +
∑

j

||Bj ||
⎞
⎠,

we can use the trivial bound N (B) = ∑
j ||Bj || � d to obtain

N (A) =
∑

i

||Ai|| � d − 2

d

∑
i j

ni j

� d − 2

αd
[1 −

√
d3(2 p̄ − 1)2 − (d2 − 1)]. (B7)

Clearly, the same lower bound holds for N (B).

APPENDIX C: INCOMPATIBILITY ROBUSTNESS

In this Appendix we derive an analytic upper bound on the
incompatibility robustness as a function of the observed ASP.
We start with a bound derived recently in Ref. [70]:

η∗ �
d2 maxi j ||Ai + Bj || − ∑

i(tr Ai )2 − ∑
j (tr Bj )2

d
∑

i tr A2
i + d

∑
j tr B2

j − ∑
i(tr Ai )2 − ∑

j (tr Bj )2
.

(C1)

The aim is to bound all the terms appearing in this formula by
quantities which we have already bounded in Appendix B.

Let us start with the numerator. The first term is easy to
bound since

||Ai + Bj || � 1 + si j,

and maxi j si j � smax given in Eq. (B5).
To bound the second term we use the fact that for posi-

tive semidefinite operators (tr A)2 � tr A2 and then bound the
Frobenius norm by the operator norm:

(tr Ai )
2 � tr A2

i = ||Ai||2F � ||Ai||2.
To bound the sum of the squares

∑
i ||Ai||2 we use a stan-

dard inequality for vector p-norms which for d-dimensional
vectors reads ||x||2 � 1√

d
||x||1. Applying this to the real vector

whose components are given by xi = ||Ai|| yields

∑
i

||Ai||2 � 1

d

(∑
i

||Ai||
)2

.
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Putting the two inequalities together gives

∑
i

(tr Ai )
2 � 1

d

(∑
i

||Ai||
)2

,

which can be bounded using Eq. (B7).
The first term in the denominator we have already bounded:

From the previous argument we see that

∑
i

tr A2
i � 1

d

(∑
i

||Ai||
)2

.

Bounding the last term turns out to be slightly more involved,
so we state it as a separate lemma.

Lemma 8. Let {Ai}i be a d-outcome measurement acting
on Cd . If ∑

i

||Ai|| � q,

then ∑
i

(tr Ai )
2 � d + (d − q)(d − q + 1).

Proof. Before proceeding to the technical details, let us
briefly explain the idea behind the proof. Suppose we are
given a partition of the d measurement outcomes into two
disjoint sets. Moreover, we are promised that the trace of the
measurement operators corresponding to the outcomes in the
first (second) set belongs to the interval [0, 1] ([1, d]). It turns
out that an upper bound on the desired quantity can be derived
in terms of simple properties of this partition. Maximising this
bound over all valid partitions leads to the main result of the
lemma.

Formally, we are given two sets X and Y such that X ∪ Y =
[d] and X ∩ Y = ∅. Moreover, we have

i ∈ X ⇒ tr Ai ∈ [0, 1],

i ∈ Y ⇒ tr Ai ∈ [1, d].

Define n := |X |, γ := ∑
i∈X tr Ai and clearly

n − γ � 0. (C2)

Moreover, the assumption of the lemma implies

q �
∑

i

||Ai|| =
∑
i∈X

||Ai|| +
∑
i∈Y

||Ai|| �
∑
i∈X

tr Ai + |Y |

= γ + d − n,

and therefore

n − γ � d − q. (C3)

For the rest of the argument let us think of n and γ as some
fixed values. Once we derive the final upper bound in terms
of these two variables, we will maximize it over the allowed
pairs of n and γ .

For i ∈ X we have (tr Ai )2 � tr Ai, and therefore

∑
i∈X

(tr Ai )
2 �

∑
i∈X

tr Ai = γ .

To bound the second term we must explicitly determine the
allowed combinations of {tr Ai}i∈Y . Since {tr Ai}i∈Y ∈ [1, d]|Y |
and ∑

i∈Y

tr Ai = d − γ ,

the valid choices of {tr Ai}i∈Y form a polytope. It is easy to
see that all the vertices of this polytope correspond to setting
|Y | − 1 values to 1 and the last value to [d − γ − (|Y | − 1)].
Since

∑
i∈Y (tr Ai )2 is a convex function of the traces, the

maximal value is achieved at a vertex, and therefore

∑
i∈Y

(tr Ai )
2 � (|Y | − 1) + [d − γ − (|Y | − 1)]2.

Plugging in |Y | = d − n gives

∑
i∈Y

(tr Ai )
2 � d − n − 1 + (n − γ + 1)2

= d + (n − γ )(n − γ + 1) − γ .

Putting the two bounds together leads to

∑
i

(tr Ai )
2 =

∑
i∈X

(tr Ai )
2 +

∑
i∈Y

(tr Ai )
2

� d + (n − γ )(n − γ + 1).

Now we must maximize the right-hand side subject to the
constraints given in Eqs. (C2) and (C3). The maximum is
achieved when the latter is saturated, which leads to the final
result of the lemma.

The final bound reads

η∗ �
1
2 d2(1 + smax) − q2

d

q2 − d − (d − q)(d − q + 1)
, (C4)

where smax is the quantity defined in Eq. (B5), while q is the
right-hand side of Eq. (B7).
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Abstract
In quantummechanics performing ameasurement is an invasive process which generally disturbs the
system.Due to this phenomenon, there exist incompatible quantummeasurements, i.e.measure-
ments that cannot be simultaneously performed on a single copy of the system. It is then natural to ask
what themost incompatible quantummeasurements are. To answer this question, severalmeasures
have been proposed to quantify how incompatible a set ofmeasurements is, however their properties
are not well-understood. In this work, we develop a general framework that encompasses all the
commonly usedmeasures of incompatibility based on robustness to noise.Moreover, we propose
several conditions that ameasure of incompatibility should satisfy, and investigate whether the
existingmeasures complywith them.We find that some of thewidely usedmeasures do not fulfil these
basic requirements.We also show that when looking for themost incompatible pairs of
measurements, we obtain different answers depending on the exactmeasure. For one of themeasures,
we analytically prove that projectivemeasurements onto twomutually unbiased bases are among the
most incompatible pairs in every dimension.However, for some of the remainingmeasures we find
that some peculiarmeasurements turn out to be evenmore incompatible.

1. Introduction

It is well-known that the concept of ameasurement in quantumphysics challenges our everyday intuition. In a
classical theory objects have properties, whether we look at themor not, and ameasurement simply reveals to us
their pre-existing values. In quantummechanics, on the other hand, performing ameasurement is an invasive
process, which necessarily disturbs the state (except for some special cases).Moreover, even if we have complete
knowledge about the system, we can only predict the probabilities of different outcomes, which can be
computed using the Born rule. An intriguing consequence of the quantum formalism is the existence of
measurements that are incompatible, i.e. that cannot bemeasured simultaneously given only one copy of the
system. The best known example consists of the position andmomentumof a quantummechanical particle,
which cannot bemeasured simultaneously with arbitrary precision.

In this workwe study the incompatibility ofmeasurements with afinite number of outcomes. These
measurements assign to each physical state ρ a discrete probability distribution pa ar{ ( )} , whose elements we
interpret as the probability of outcome a on the state ρ.We say that twomeasurements are compatible (or jointly
measurable) if there exists a singlemeasurement, referred to as the parentmeasurement, that is able to universally
replace the two [1, 2].More specifically, on any state the outcome probabilities of bothmeasurements can be
recovered from the outcome probabilities of the parentmeasurement. Therefore, the twomeasurements can be
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performed simultaneously by performing the parentmeasurement. If such a parentmeasurement does not exist,
we say that themeasurements are incompatible (or not jointlymeasurable).We remark here that other notions of
compatibility, such as commutativity, non-disturbance and coexistence, are also used in the literature [1, 3]; let
us for completeness briefly explain how they are related. Commutativity of ameasurement pair implies non-
disturbance, which in turn implies jointmeasurability, which then implies coexistence.Moreover, it is known
that none of the converse implications hold in general, therefore these notions are strictly distinct [4]. In this
workwe focus solely on the notion of jointmeasurability, because the existence (or not) of a parent
measurement has a clear operationalmeaning. Therefore, throughout the present paper we use the terms ‘(in)
compatibility’ and ‘(non-)jointmeasurability’ interchangeably. It is important to notice that whenever two
measurements are compatible, they cannot be used to produce quantumadvantage in tasks like Bell nonlocality
[5] or Einstein–Podolsky–Rosen steering [6, 7].Moreover, it was recently shown that jointmeasurability is
equivalent to a specific notion of classicality, namely, preparation non-contextuality [8, 9]. Hence, onemay
think of compatiblemeasurements as ‘classical’ , and incompatiblemeasurements as a resource for the above
tasks. Therefore, it is of fundamental importance to characterise and understand the structure of incompatible
measurements.

What is particularly important is to go beyond the dichotomy of compatible and incompatible
measurements, and quantify to what extent a pair ofmeasurements is incompatible. A natural framework for this
quantification, often used in the literature, is to definemeasures based on robustness to noise. Briefly speaking,
robustness-basedmeasures of incompatibility quantify theminimal amount of noise that needs to be added to a
pair ofmeasurements tomake them compatible. Themore noise is required, themore incompatible the
measurements are. Note thatmeasures of this type are directly relevant to experiments, because in real-world
implementationsmeasurements are always noisy, due to inevitable experimental imperfections.

Robustness-basedmeasures are also naturalmeasures of incompatibility in the context of resource theories
[10, 11]. Here one considers a set of ‘free’ objects (compatiblemeasurements) and quantify the usefulness of
‘resource’ objects (incompatiblemeasurements) by so-called resourcemonotones.While in this workwe do not
develop a full resource theory of incompatibility, we note that robustness-basedmeasures are good candidates
for resourcemonotones if they satisfy certain natural properties[12–15]. In resource theories one defines ‘free
operations’ that do not create resource (that is, do notmap compatiblemeasurements to incompatible ones).
Properly defined resourcemonotones should then bemonotonic under such free operations. Oncemeasures
with the desired properties are found, the question ‘what are themost incompatible pairs ofmeasurements?’ is
well-definedwith respect to each of thesemeasures.

Several robustness-basedmeasures have been proposed in the literature (see [16] for an introduction), the
essential difference between thembeing the assumed noisemodel. Nevertheless, some basic properties of these
measures have not been determined and little effort has been dedicated to understanding the similarities and
differences among them. In this workwemake the following contributions tofill this gap.

• Wedevelop a framework inwhich a robustness-basedmeasure can be definedwith respect to an arbitrary
noisemodel.We identify theminimumassumptions on the noisemodel that ensure that the resulting
measure satisfies some basic requirements, i.e. we provide an explicit connection between the properties of the
noisemodel and the desired properties of themeasure.

• Weapply our framework to studyfivemeasures already introduced in the literature in a unified fashion. By
giving explicit counterexamples we show that somewidely usedmeasures do not satisfy certain natural
propertiesmotivated by resource theories.

• We show thatwhen looking for themost incompatible pairs, we obtain different answers depending on the
specificmeasure of incompatibility. For one of themeasures we analytically prove thatmutually unbiased
bases (MUBs) are among themost incompatible pairs ofmeasurements in every dimension. For three other
measures we can explicitly show that, for dimensions larger than two,MUBs are not among themost
incompatible pairs. Our study for the lastmeasure is inconclusive.

In section 2we define incompatibility robustness in a fashion that is independent of the specific noisemodel,
introduce the natural properties that themeasures should desirably satisfy and relate them to the properties of
the noisemodel, formulate the notion ofmost incompatiblemeasurement pairs, and discuss themeasures’
semidefinite program (SDP) formulation and how to use this formulation to derive bounds on them. Then in
section 3we introduce the fivemeasures already used in the literature, illustrate themon a simple example,
analyse their relevant properties, and derive newbounds on each of them. At the end of this sectionwe discuss
the relations between themeasures, apply our results to compute all the differentmeasures forMUBs, then
summarise themain results in a compact form. In section 4we address the question of themost incompatible
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pairs ofmeasurements under thefivemeasures. Finally, in section 5we summarise the new findings and pose
some important open questions arising fromourwork.

Wenote here that the notion of incompatibility naturally generalises tomore than twomeasurements, but
for simplicity in themain text we restrict ourselves to pairs ofmeasurements. For a formal treatment of larger
sets ofmeasurements, and results regarding them,we refer the interested reader to appendix E.

2.Definitions and basic properties

In this sectionwe formalise themain definitions and concepts outlined in the introduction.We give a
mathematically precise definition of (in)compatibility and of robustness-basedmeasures for an arbitrary noise
model. Thenwe specify a fewnatural properties themeasures should satisfy, and give concrete conditions on the
noisemodel under which these are automatically fulfilled.We also rigorously formulate the notion of ‘most
incompatiblemeasurements’, and discuss how to efficiently search for them. Finally, we introduce the notion of
SDP, and how to use it to derive bounds on robustness-basedmeasures.

2.1. Incompatiblemeasurements
Throughout this paper we analyse themost generalmodel of quantummeasurements, positive operator valued
measures (POVMs). For thismodel, we establish that the physical system lives on a d-dimensionalHilbert space,

d  . The relevant objects are all elements of the set of linear operators on this space, d ( ). The state of the
system is described by a positive semidefinite operatorwith unit trace, denoted by ρ. A POVMwith n outcomes
is a set of n positive semidefinite operators, Aa a

n
1={ } , such that Aa

n
a1 å == , where  is the identity operator. The

probability of observing outcome a is given by the Born rule, p Atra ar r=( ) ( ). In the following, wewill use the
terms ‘measurement’ and ‘POVM’ interchangeably.

Wewill often refer to the following three important classes of POVMs.Rank-onePOVMs aremeasurements
whose elements are rank-one operators, Aa a aj jµ ñá∣ ∣, where a aj jñá∣ ∣ is the projector onto a

dj ñ Î∣ . Note that
suchmeasurements cannot have fewer elements than the dimension of theHilbert space, that is, n d with the
above notation. Projectivemeasurements are POVMswhose elements are projectors. Note that such
measurements cannot havemore non-zero elements than the dimension of theHilbert space. Since the set of
measurements with n outcomes acting on dimension d is a convex set, wewill talk about extremalPOVMs (in the
convex geometry sense). Recall that every POVMcan bewritten as a convex combination of extremal POVMs
and these have been extensively studied in [17].

The ability to recover the outcome probabilities of two POVMs on any state from the statistics of a single
measurement is referred to as jointmeasurability and can be formulated in the followingway.

Definition 1.Given twoPOVMs, Aa a
n

1
A
={ } and Bb b

n
1

B
={ } , we say that they are jointlymeasurable (or compatible) if

there exists a POVM Gab a b
n n

1, 1
,A B
= ={ } such that G Ab

n
ab a1

Bå == for all a, and G Ba
n

ab b1
Aå == for all b.We call such a

POVMa parentmeasurement of Aa a
n

1
A
={ } and Bb b

n
1

B
={ } .

This definition captures the idea that the parentmeasurement provides a joint outcome distribution of the
two initialmeasurements on every state. It is worth pointing out that the notion of jointmeasurability inwhich
the parent POVM is allowed an arbitrary (finite) outcome set and arbitrary classical post-processing turns out to
be equivalent to the one above (see e.g. [16], section 3.1).

We note that a parent POVM is not necessarily unique for afixed pair ofmeasurements [18, 19]. It is clear
that in order to recover the outcome probabilities ofA andB, one only needs tomeasureG and add up the
relevant probabilities (in the followingwe sometimes drop the outcome indices to refer to the POVMs, when it
does not lead to confusion; this notation is to be understood as A Aa a

n
1

A= ={ } ). A simple example of a jointly

measurable pair is the trivialmeasurement pair,
n a

n

1A

A

=
{ } and

n b

n

1B

B

=
{ } with the parent POVM

n n a b

n n

1, 1

,

A B

A B

= =
{ } . In

fact any POVMpair with pairwise commutingmeasurement operators, A B, 0a b =[ ] for all a and b, is jointly
measurable. This can be seen by employing the parent POVMGwith elements G A Bab a b= , which is guaranteed
to be positive in this case. Note that commutativity becomes necessary and sufficient if one of the two
measurements is projective, see [18], proposition 8 for a proof.

If a parent POVMdoes not exist, we say thatA andB are not jointlymeasurable (or incompatible). A standard
example of incompatible d-outcomemeasurement pairs in dimension d 2 is a pair of projective
measurements onto twoMUBs [20]. These consist of rank-one projectors A a a a

dMUB
1j j= ñá ={∣ ∣} and

B b b b
dMUB

1y y= ñá ={∣ ∣} onto the orthonormal bases a a
d

1j ñ ={∣ } and b b
d

1y ñ ={∣ } , such that all the pairwise overlaps

(moduli of inner products) are uniform: d1a bj yá ñ =∣ ∣ ∣ for all a b, . As thesemeasurements are projective and
non-commuting, they are incompatible.
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In the followingwewill denote the set of POVMpairs with outcome numbers nA and nB in dimension d by
POVMd

n n,A B, and its elements by A B,( ). Note that POVMpairs inherit the convex structure of POVMs (denoted
by POVMd

n), therefore convex combinations of them arewell-defined. For the subset corresponding to jointly
measurable pairs, wewill use the notation JMd

n n,A B, but drop the indices whenever it does not lead to confusion.
Note that the set JMd

n n,A B is a convex subset of POVMd
n n,A B: it is straightforward to verify that if A B JM, d

n n0 0 ,A BÎ( )
withparentPOVMG0, and A B JM, d

n n1 1 ,A BÎ( ) withparentPOVMG1, then p A B p A B JM1 , , d
n n0 0 1 1 ,A B- + Î( )( ) ( )

withparentPOVM p G pG1 0 1- +( ) for all p 0, 1Î [ ]. That is, taking convex combinationspreserves joint
measurability.

2.2. Incompatibility robustness
In order to talk about noisymeasurements, we definewhat wemean by a noisemodel.

Definition 2.A noisemodel N is amap N POVM POVM: d
n

d
n ( ), where  is the set of all subsets, thatmaps

every POVM A POVMd
nÎ to a subset of all n-outcome POVMs in dimension d, that is,

AN N POVM: A d
nÍ .Wewill refer to NA as the noise set ofA under this noisemodel.

Given a noisemodel, we can define noisy versions of POVMs as convex combinations of POVMswith
elements of their corresponding noise sets. Specifically, if M NAÎ and 0, 1h Î [ ], then a noisy version ofAwith
visibility η is the POVM

A M POVM1 . 1d
nh h+ - Î( ) ( )

Noisemodels will be crucial for our analysis, as different noisemodels give rise to differentmeasures of
incompatibility. Initially, for a unified treatment of robustness basedmeasures, wewill discuss properties that do
not depend on the precise choice of the noisemodel, and only introduce explicit choices in section 3, wherewe
analyse the five specificmeasures.

In order to apply it to incompatibility, we extend the concept of a noisemodel to pairs ofmeasurements:
in this case, the noisemodel N is amap N POVM POVM: d

n n
d
n n, ,A B A B ( ) thatmaps every pair A B, Î( )

POVMd
n n,A B to its corresponding noise set, A BN N POVM: , A B d

n n
,

,A BÍ( ) . Note that the set NA B, may actually
depend on themeasurementsA andB, and not simply on their dimension or number of outcomes (whenever

themap N is not constant). The simplest example of a noisemodel is N ,A B n a
n

n b
n

, 1 1
A

A

B

B = = ={ }( ){ } { } , thatmaps

every POVMpair to the one-element set containing only the trivialmeasurement pair. On the other end of the
spectrum, the largest possible choice of the noisemodel is N POVMA B d

n n
,

,A B= , mapping every POVMpair to the
set of all POVMpairs.

Wewill nowdefine ameasure of incompatibility corresponding to an arbitrary noisemodel. To ensure that
themeasure is well-defined, we require that themap N is such that for every pair A B,( ) the noise set NA B,

contains at least one jointlymeasurable pair. For any such noisemodel, one can define an incompatibility
robustnessmeasure for pairs of POVMs, i.e.themaximal visibility at which the noisy pair is still compatible.

Definition 3.Given twoPOVMs, Aa a
n

1
A
={ } and Bb b

n
1

B
={ } on d , and a noisemodel N, we say that the

incompatibility robustness A B,
*h of the pair A B,( )with respect to this noisemodel is

A B M N JMsup , 1 , . 2A B

M N

d
n n

N

,
0,1

,

,

A B

A B

,

*h h h h= + - Î
hÎ

Î

{ ∣ · ( ) ( ) · ( ) } ( )
[ ]

( )

This definition has a clear geometric interpretation, seefigure 1.Note that regardless of the choice of the noise
model, 1A B,

*h = if and only ifA andB are jointlymeasurable, and that under this definition the lower A B,
*h is, the

more incompatible themeasurements are.

There are several other requirements onemight impose on the noisemodel. Let us briefly discuss some of
these and explainwhat their consequences are.

• If we assume that for every pair A B,( ), the noise set NA B, is closed, we are guaranteed that the supremum is
achieved, i.e. there exists an optimal noise pair. In this case the supremum in equation (2) can be replaced by a
maximum.Note that sincewe are dealingwithfinite-dimensional objects, it is irrelevant which topologywe
choose to define the notion of closedness.

• If we assume that for every pair A B,( ), the noise set NA B, is convex, we are guaranteed tofind a decomposition
of the form given in equation (2) for any 0, A B,

*h hÎ [ ). It suffices tofind a noise pair M N,¢ ¢( ) and a visibility
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h h¢ such that

A B M N JM, 1 , . 3h h¢ + - ¢ ¢ ¢ Î· ( ) ( ) · ( ) ( )
Such M N,¢ ¢( ) and h¢ are guaranteed to exist, since A B,

*h h< . Then pick M N N, A B
JM JM

,Î( ) such that

M N JM, , 4JM JM Î( ) ( )
which is again guaranteed to exist by our fundamental assumption on the noisemodel. From the convexity of
JM it follows that taking the convex combination of equation (3)withweight h h¢ and equation (4)with
weight 1 h h- ¢( ) leads to A B M N JM, 1 ,h h+ - Î· ( ) ( ) · ( ) , where

M N M N M N,
1

1
, 1

1

1
, , 5JM JMh

h
h

h
h
h

h
h

=
-

- ¢
¢

¢ ¢ + -
-

- ¢
¢

⎛
⎝⎜

⎞
⎠⎟( ) · · ( ) · · ( ) ( )

and the convexity of NA B, ensures that M N N, A B,Î( ) . Note that a looser constraint, namely that NA B, is a
radial set at M N,JM JM( ) (the line segments between M N,JM JM( ) and all other elements of NA B, are contained
in NA B, ) is sufficient for this property.

• Another property onemight require from the noise set is covariance with respect to unitaries. Intuitively, this
means that if two pairs ofmeasurements are related by a unitary, then so should be their respective noise sets.
More specifically, if A B,( ) and A B,¢ ¢( ) satisfy

A UA U B UB Uand 6a a b b= =¢ ¢ ( )† †

for all outcomes a and b and for some fixed unitaryU, then

M N UMU UNUN N, , . 7A B A B, ,Î Î ¢ ¢( ) ⟺ ( ) ( )† †

This property is sufficient to ensure that the resulting incompatibility robustnessmeasure is unitarily
invariant, i.e. A B A B, ,

* *h h= ¢ ¢.

• Finally, onemight require that for every choice of A B,( ) the corresponding noise set NA B, is invariant under
unitaries, i.e.

M N UMU UNUN N, , 8A B A B, ,Î Î( ) ⟹ ( ) ( )† †

for every unitaryU. An advantage of this property is that if we assume that the noise set is convex, thenwe can
average over theHaarmeasure on unitarymatrices, which leads to a noise pair whose every element is
proportional to the identity operator.Wewill use this property in section 2.4 to derive non-trivial lower
bounds on the resulting incompatibilitymeasure.

Figure 1. Schematic representation of a generic incompatibility robustnessmeasure for a noisemodel whichmaps to closed and
convex sets. Note that in general the noise set NA B, need not be contained in the jointlymeasurable set JM. One can also easily infer
that the optimal noise pair M N,( ) must lie on the boundary of NA B, and that the optimal noisy pair

A B M N, 1 ,A B A B, ,
* *h h+ -· ( ) ( ) · ( )must lie on the boundary of JM.
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The last two properties are clearly related. Indeed, if the noise set does not depend on the pair A B,( ) beyond
the dimension and the outcome numbers (themap N is constant), they turn out to be equivalent. However, in
full generality these two properties are independent, i.e. we can have onewithout the other. To conclude let us
simply state that all themeasures considered in this work satisfy all the requirements stated above.

In section 3, wewill replace the star in A B,
*h with a reference to the specific noisemodel in order tomake clear

whichmeasurewe use. In general we are looking for noisemodels that give rise tomeasures of incompatibility
that satisfy certain natural propertiesmotivated by resource theories.

2.3.Monotonicity
The natural properties we consider capture the intuition thatmeasures of incompatibility should not decrease
under operations that do not create incompatibility. In other words,measurements should not becomemore
incompatible under such operations. This is well-motivated from the resource theoretic point of view, allowing
for a partial order ofmeasurement pairs based on their incompatibility robustness.

Consider an operation A B A B: , ,F F( ) ( ), thatmaps every POVMpair to another POVMpair, not
necessarily preserving the dimension or the outcome numbers.We say that this operation is jointmeasurability-
preserving if for all A B JM, Î( ) wehave that A B JM,F Î( ) . It is desirable that ourmeasures are non-
decreasing under such operations, that is, A B A B, ,

* *h hF( ) for every jointmeasurability-preserving operationΦ. If

this inequality holds for every A B,( )we say that *h ismonotonic underΦ.
Whenever the jointmeasurability-preserving operationΦ is linear, a simple property of the noisemodel N

impliesmonotonicity, namely, N NA B A B, ,F Í F( ) ( ) for all A B,( ). To see this, consider ameasurement pair
A B,( ) and its corresponding noise set NA B, . Following fromdefinition 3, we have that

A B M N JM, 1 , 9A B A B, ,
* *h h+ - Î· ( ) ( ) · ( ) ( )

for some M N N, A B,Î( ) . ApplyingΦ to the left-hand side, we obtain

A B M N JM, 1 , , 10A B A B, ,
* *h hF + - F Î· ( ) ( ) · ( ) ( )

asΦ is linear and jointmeasurability-preserving.Whenever N NA B A B, ,F Í F( ) ( ), the left-hand side of
equation (10) is a noisy version of A B,F( )with visibility A B,

*h , which implies that A B A B, ,
* *h hF( ) . Therefore, if

the image of the noise set underΦ is contained in the noise set of the image for everymeasurement pair, then *h
based on this noisemodel ismonotonic underΦ. Inmany cases, the stronger property N NA B A B, ,F = F( ) ( ) holds
for all A B,( ), and thenwe say that the noisemodel is invariant underΦ.

In this paperwewill consider two natural classes of jointmeasurability-preserving operations, which are
transformations of themeasurement outputs and inputs. Thefirst class acts on the outputs of themeasurements
and is therefore called post-processings. The second class, on the other hand, acts on the inputs (quantum states)
of themeasurements, and is accordingly called pre-processings (seefigures 2 and 3, respectively). Post-
processings amount to recording the outcome of themeasurement and then applying a response function to it. It
can therefore be formulated in the followingway.

Definition 4.Apost-processingβmaps Aa a
n

1
A
={ } to Aa a

n
1

Ab
¢ ¢=

¢{ } , where

A a a A , 11a
a

n

a
1

A

å b= ¢b
¢

=

( ∣ ) ( )

and a a ab ¢ ¢{ ( ∣ )} is a probability distribution for every a n1, 2, , AÎ ¼{ }.
A post-processing is called deterministic if the probability distribution a a ab ¢ ¢{ ( ∣ )} is deterministic for all

a n1, 2, , AÎ ¼{ }, that is, a a 0, 1b ¢ Î( ∣ ) { }. If such a post-processing decreases the number of outcomes, it is
referred to as coarse-graining or binning, e.g. the operationmapping the POVM A A A, ,1 2 3{ } to A A A,1 2 3+{ }.
What is important is that every POVMcan be obtained by coarse-graining a rank-one POVMwith potentially
more outcomes.

Note that post-processings preserve the dimension butmight change the outcome number. For pairs A B,( )
the operation A B A B: , ,A BFb b b( ) ( ) is jointmeasurability-preserving (note that the post-processings applied
toA andB are independent): assume that A B JM, Î( ) with parent POVMG. Then it is straightforward to verify
that A B JM,A B Îb b( ) with parent POVM Gb, where G a a b b Ga b ab A B abb b= å ¢ ¢b

¢ ¢ ( ∣ ) ( ∣ ) .
The second class, pre-processings, amounts tofirst applying a quantum channel to themeasured state and

then performing themeasurement. Denoting the channel acting on the state by L† (the dual of themapΛ), we
arrive at the following definition.
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Definition 5.Apre-processingΛmaps Aa a
n

1
A
={ } to Aa a

n
1

AL
={ } , where

A A , 12a a= LL ( ) ( )

and : d d  L ¢( ) ( ) is a completely positive unitalmap.

Note that, for our formal treatment the unitalmapΛ does only need to be positive (and not necessarily
completely positive), although all the positive unitalmaps appearing in this work are also completely positive.

Awell-known example of pre-processings is the one inNaimark’s dilation theorem. This states that for every
POVMA on d , there exists d ¢ Î , an isometryV : d d  ¢, and a projectivemeasurement P on d ¢ such
that A V P Va a= † for all a, that is, A P= L, where V V. .L =( ) ( )† is a (completely) positive unitalmap. That is,
every POVMcan be obtained by pre-processing a projectivemeasurement acting on a potentially higher
dimensionalHilbert space.

Note that pre-processings preserve the outcome number butmight change the dimension. For pairs A B,( )
the operation A B A B: , ,FL L L( ) ( ) is jointmeasurability-preserving (in contrast to the case of post-
processing, here there is just a single pre-processing applied to bothA andB): assume that A B JM, Î( ) with
parent POVMG. Then it is straightforward to verify that A B JM, ÎL L( ) with parent POVM GL. Note also that
an incompatibilitymeasure that ismonotonic under pre-processings necessarily satisfies unitary invariance, as
alreadymentioned in [12], sectionC.

Finally, let us consider another natural operation that preserves joint-measurability, although it is of a
differentflavour than pre- and post-processings. Namely, recall that taking convex combinations preserves joint
measurability, that is, for any A B JM,0 0 Î( ) and A B JM,1 1 Î( ) we have that A B p A B, 1 ,p p 0 0= - +( ) ( )( )
p A B JM,1 1 Î( ) for all p 0, 1Î [ ] (see section 2.1). For this reason, it is desirable that ourmeasures do not
decrease under taking convex combinations, that is, min ,A B A B A B, , ,p p 0 0 1 1* * *h h h{ } for all p 0, 1Î [ ], a property
sometimes referred to as quasi-concavity.

It is easy to see that this condition holds whenever the noisemodel satisfies the simple property that,using the
above notation,for any M N N, A B

0 0
,0 0Î( ) and M N N, A B

1 1
,1 1Î( ) ,we have M N p M N, 1 ,p p 0 0= - +( ) ( )( )

p M N N, A B
1 1

,p pÎ( ) . To see this,let us define min ,A B A Bmin , ,0 0 1 1* * *h h h= { }. From the convexity of the noise set,

there exist M N N, A B
0 0

,0 0Î( ) and M N N, A B
1 1

,1 1Î( ) such that A B M N JM, 1 ,min
0 0

min
0 0* *h h+ - Î· ( ) ( ) · ( )

and A B M N JM, 1 ,min
1 1

min
1 1* *h h+ - Î· ( ) ( ) · ( ) (see section 2.2). Taking a convex combination of these two

relationswith coefficients p1 - and p, respectively, results in A B M N JM, 1 ,p p p p
min min
* *h h+ - Î· ( ) ( ) · ( ) ,

that is, min ,A B A B A B, , ,p p 0 0 1 1* * *h h h{ }. All the noisemodels considered in this paper satisfy the requirement stated
above and therefore the correspondingmeasures are non-decreasing under convex combinations.

A stronger property that is often desired is joint concavity, which using the above notation reads
p p1A B A B A B, , ,p p 0 0 1 1* * *h h h+ -( ) (note that throughout this paper wewill write ‘concavity’ and ‘convexity’

Figure 2. Schematic representation of a post-processing of ameasurement.

Figure 3. Schematic representation of a pre-processing of ameasurement.
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instead of ‘joint concavity’ and ‘joint convexity’, for simplicity). However, what one naturally deduces by looking
at the noisemodel turns out to be slightly different.More specifically, if the noise set is convex for every pair
and the noisemodel is a constantmapwemay conclude that the inverse of themeasure is convex, i.e.

p p1 1A B A B A B, , ,p p 0 0 1 1* * *h h h- +( ) , similarly to the proof in [21], proposition 2. It is easy to see that the
concavity of *h implies that 1 *h is convex [22], equation (3.11), but the converse does not hold in general. In
fact, in appendix A, using an explicit counterexample, we show that none of themeasures studied in this paper
are concave. It is common to use themeasure t 1 1* *h= - instead of *h because it is easy to prove its
convexity, and it also has the appealing property that it vanishes for every A B JM, Î( ) (a property referred to as
faithfulness in [23]—also note that in [24], faithfulness, post-processingmonotonicity and convexity were
postulated as natural properties of anymeasure of incompatibility).Moreover, whenever *h ismonotonic under
pre- or post-processings, then so is t* (with opposite relation in the inequality definingmonotonicity).
Nevertheless, in the followingwewill study *h since it suits our purposes better and it is easily
interconvertible witht*.

In section 3, wewill investigate the properties introduced above for each specificmeasure. As all these
measures are quasi-concave and none of them are concave, wewill only explicitly address pre- and post-
processingmonotonicity of *h , and convexity of the corresponding inversemeasure, t*.

2.4.Most incompatiblemeasurements
For any givenmeasure of incompatibility, one can askwhat themost incompatible pairs of POVMs are. Tomake
this questionwell-defined, we introduce the following quantity.

Definition 6.Given ameasure of incompatibility, *h , we define d n n; ,A B*c ( ) to be its lowest possible value for
dimension d and outcome numbers nA and nB.

d n n A B POVM; , min , . 13A B A B d
n n

,
,A B* *c h= Î( ) { ∣ ( ) } ( )

Theminimum in this definition is justified, as the set POVMd
n n,A B is closed and bounded. For afixedmeasure this

definition yields a real number from the range 0, 1[ ] for all positive integers d n n, ,A B. Sometimes, however, we
might be interested in less detailed information.Wemight just ask the question ‘what are themost incompatible
measurement pairs in dimension d?’, regardless of the outcome numbers, leading to the quantity

d d n ninf ; , , 14
n n

A B
,A B

* *c c=( ) ( ) ( )

where the infimum is taken over positive integers and it is not clearwhether d*c ( ) is achieved for any finite nA
and nB. Alternatively, wemight only fix the outcome numbers, leading to n n,A B*c ( ), orfix neither the
dimension nor the outcome numbers, leading to *c .

Onemightwonder whether a non-trivial lower bound on *c can be derived based only on the previously
assumed property of the noisemodel, namely, that for every POVMpair the corresponding noise set contains
at least one jointlymeasurable pair, but this turns out not to be the case. For every pair of incompatible
measurements A B,( )we can choose the noise set to contain a single jointlymeasurable pair with the property
that the interior of the line segment connecting A B,( ) and the noise pair lies outside the jointlymeasurable set.
Clearly, in this case 0A B,

*h = for all incompatible pairs A B,( ), and *h defined through this construction is just
the indicator function of jointmeasurability.

However, amild additional assumption on the noisemodel allows us to get a non-trivial lower bound on *c .
Suppose that for every incompatible pair A B,( ) there exists a valid noise pair M N,( ) such that the
measurement operators ofA commutewith those ofN and similarly themeasurement operators ofB commute
with those ofM. Then, the POVMgiven by

G A N M B
1

2
15ab a b a b= +( ) ( )

is a valid parent POVM for A M1

2
+( ) and B N1

2
+( ), therefore it ensures that A B,

1

2
* h , andwe conclude that

1

2
* c . Clearly, the above condition is fulfilledwhenever we are guaranteed tofind a noise pair where all the

elements are proportional to the identity (a direct consequence of the unitary invariance property discussed in
section 2.2). This is the case for all themeasures that we study.

Tomake the search for themost incompatible pairs ofmeasurements efficient, it is crucial to identify
operations under which themeasure ismonotonic, as it significantly shrinks the set over whichwe need to
optimise. Specifically, if wewant to compute d n n; ,A B*c ( ) andwe deal with ameasure that is non-decreasing
under convex combinations, we only need to consider pairs of extremalmeasurements. If our goal is to compute

d*c ( ), i.e. we do not care about the number of outcomes, and ourmeasure ismonotonic under post-
processings, we do not need to considermeasurement pairs that are post-processings of another pair. Since every
POVMcan bewritten as a post-processing (coarse-graining) of some rank-one POVMwith possiblymore
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outcomes, for post-processingmonotonicmeasures the value d*c ( ) can be found by searching only over rank-
onemeasurements. Similarly, if we aim to compute n n,A B*c ( ), i.e. we do not care about the dimension, and our
measure ismonotonic under pre-processings, we do not need to considermeasurement pairs that are pre-
processings of another pair. Due toNaimark’s dilation theorem, every POVMcan be obtained by pre-processing
a projectivemeasurement that possibly acts on a higher dimensional space, therefore projectivemeasurements
achieve n n,A B*c ( ) for pre-processingmonotonicmeasures.

2.5. Semidefinite programming
It is clear fromequation (2) that incompatibility robustnessmeasures are defined through anoptimisationproblem.
The class of optimisationproblems that arises in our case is called SDPandcanbe seen as a generalisationof linear
programming [22]. AnSDP is anoptimisationproblemwhose optimisation variables arematrices, andwhose
objective function and constraints are linear functions of these variables. The constraints canbe eithermatrix
equalities ormatrix inequalities (recall that formatrices the inequality A B is equivalent toA−Bbeing apositive
semidefinitematrix). For every SDP, later referred to as theprimal, another SDP, called thedual, canbedefined such
that its solutionbounds theprimal one. In this paper theprimal SDP is amaximisationproblemand thedual SDP is a
minimisationproblemwhose solutionupper bounds theprimal solution. In all the examples thatwe study in this
work, the solutions of these twoSDPs in fact coincide, aswewill see in section 3.1.1. Thanks to this feature, it is
possible to efficiently solve suchSDPson a computer,which gives us a tool to study incompatibility robustness
measuresnumerically. This toolweoften employedusing theMATLABcomputing environment togetherwith the
YALMIP [25], SDPT3 [26] andMOSEK [27]optimisation toolboxes.However, themainobjective of ourwork is to
study thesemeasures analytically. In order todo so,wefind feasible points for the SDPs, that is, assignments of
variables that satisfy all the constraints, but that are notnecessarily optimal. Byfinding feasible points for theprimal
anddual problems,weobtain lower andupper bounds, respectively, on the value of the optimisationproblem. In the
next two sectionswe introduceobjects thatwill come inuseful forfinding such feasible points.

2.5.1. Lower bounds
Feasible points for the primal SDP lead to lower bounds on the incompatibility robustness. For a fixed pair
A B,( ) feasible points correspond to a noise pair M N,( ), a visibility η, and a parent POVMG for

A B M N, 1 ,h h+ -· ( ) ( ) · ( ), all of these satisfying the constraints of the SDP. That is, the noise pair should
satisfy M N N, A B,Î( ) , and the visibilitymust be in the range 0, 1h Î [ ]. Crucially, the parent POVMG should
give A M1h h+ -( ) and B N1h h+ -( ) asmarginals (which also guarantees its proper normalisation), and
all itsmeasurement operators should be positive semidefinite. In order tofind feasible parent POVMs satisfying
these properties, we introduce an ansatz solution. This ansatz encompasses all possible choices of the parent
POVMelements that are linear combinations of the elements ofA andB, their square-roots, and products
thereof, such that the normalisation of the parent POVM is ensured. Namely, let

G A B A B A B A B A B, 16ab a b b a a b ab a b a b a b

1
2

1
2

1
2

1
2a b g dµ + + + + +{ } ( ) ( ) ( )

for some real parameters ,b ba b , abg and δ. It is clear then that Gab ab å µ .
In this construction the anticommutator termplays a crucial role.When themeasurement operators of the

two POVMs commute, i.e. we have A B B Aa b b a= for all a and b, the anticommutator is guaranteed to be
positive semidefinite.We can therefore set G A B,ab a b

1

2
= { }, which is a valid parent POVMforA andB. For

non-commutingmeasurement operators, however, the anticommutatormight have some negative eigenvalues
for which the remaining terms are supposed to compensate. Note that the same construction for parent POVMs
has recently been used in [28].

For a pair of rank-one POVMs checking the positivity of equation (16) becomes analytically tractable: in this
case we canwrite the operator as a direct sumof an operator acting on the two-dimensional subspace spanned by
the eigenvectors ofAa andBb, and amultiple of the identity on the orthogonal subspace (which is non-trivial for
d 3 ). This allows us to explicitly compute the eigenvalues and check positivity. For this reason, for our
methods towork efficiently and provide tight bounds, it is extremely important that themeasurewe study is
monotonic under post-processings. This is because in this case it is enough to look at rank-one POVMs in order
tofind themost incompatible pairs, and the robustness of any POVMpair can be bounded by the robustness of
their rank-one decompositions.

Note that computing themarginals of the POVM in equation (16) is also easy in general, except for the terms
multiplying the parameter δ. However, formost constructions wewill choose 0d = , and only include this term
in a special (albeit very important) case.

As an example, let us present a known result initially presented for pairs in [29] and then generalised to
arbitrary number ofmeasurements [16, 30, 31]. The idea is to try to perform twomeasurements simultaneously
by duplicating the input state and then feeding eachmeasurement with one of the copies. By virtue of the
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no-cloning theorem, the duplication process cannot be perfect. Thanks to a duality between noiseless
measurements acting on noisy states and noisymeasurements acting on noiseless states, one can obtain a parent
POVM from this procedure

G
d

A B B A A B
1

2 1
, tr tr , 17ab a b b a a b=

+
+ +( ) [{ } ( ) ( ) ] ( )

which is indeed of the form (16). The positivity ofGab defined in this way follows straightforwardly from the fact
that A A B Btr tr 0a a b b

2 +[ ( ) ( )] (we assume that A Btr tr 0;a b > the other cases are trivial). This parent
POVMgives rise to a universal lower bound on somemeasures, see equation (26).

2.5.2. Upper bounds
In order to derive upper bounds on incompatibility robustnessmeasures, we need tofind feasible points for the
dual SDPs. These SDPs have a similar structure for all the differentmeasures that we study in this work, and
therefore some quantities will often appear in the upper bounds. For this reason, we define themhere:

f
A

d

B

d
A B

tr tr
and max max Sp , 18

a

a

b

b

a b
a b

2 2

,
å å l= + = +{ ( )} ( )

where MSp( ) is the spectrumof the operatorM (note thatAa+ Bb is always positive semidefinite). It is easy to
see that f 2 and the inequality is saturated if and only if bothmeasurements are projective.Wewill also need
the following four quantities:

g
A

d

B

d
g

n n

g
A

d

B

d
g A B

tr tr
,

1 1
,

min
tr

min
tr

, and min min Sp . 19

a

a

b

b

A B

a

a
b

b

a b
a b

d
2 2

r

p jm

,

å å= + = +

= + = +

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

{ ( )} ( )
Note that g g g d2d r p= = = whenever bothmeasurements are rank-one projective.

2.6. Example
Wewill compute all the studied incompatibility robustnessmeasures for a pair of rank-one projective qubit
measurements parametrised as

A B
1

2
1 cos sin and

1

2
1 cos sin , 20a

a
z x b

b
z x q q s q s q q s q s= + - + = + - -( ) [ ( ) ( )] ( ) [ ( ) ( )] ( )

where zs and xs are the PauliZ andXmatrices, 0, 4q pÎ [ ] and a b, 1, 2= . Note thatwe choose the angle θ to
be half of the angle between the Bloch vectors of the twomeasurements. For this pair of rank-one projective
measurements, we can compute the different parameters defined in equations (18) and (19), namely, f 2= ,

1 cosl q= + , g g g 1d r p= = = , and g 1 cosjm q= - . In the following, when discussing anymeasure of
incompatibility for this pair, wewill use *hq as a shorthand for A B,

*h q q( ) ( ).Wewill alsomake use of the following
compact notation towrite down the primal and dual variables:

G
G G
G G

X Y
X
X

Y
Y

and , , , 2111 12

21 22

1

2

1

2
= =

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟( ) ( )

where the elementsGab,Xa andYb are 2 2´ Hermitianmatrices.

3. Five relevantmeasures

In this sectionwe introduce five different explicit noisemodels, which give rise tofive different robustness-based
measures of incompatibility that are commonly used in the literature. For eachmeasurewewrite down both the
primal and the dual SDPs, analyse their desired properties, illustrate their computation on a pair of rank-one
projective qubitmeasurements, and derive explicit lower and upper bounds on them. A compact summary of
themain results can be found at the end of this section in table 1.

3.1. Incompatibility depolarising robustness
3.1.1. Definition and properties
In this case the noisemodel is defined by themap

A
d

B
d

N tr , tr . 22A B a
d

a

n

b
d

b

n

,
d

1 1

A B 
=

= =

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭{ } { }( ) ( ) ( )
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The noise set depends on the specificmeasurements, whichmakes thismeasure different than all the other
measures considered in this work. It has been investigated inmanyworks [12, 28, 30, 32–36], often in relation
with Einstein–Podolsky–Rosen steering. This specific type of noise has also been considered in scenarios
different from incompatibility [37]. The physicalmotivation is as follows: take a depolarising quantum channel

.Lh( )† , which acts on states as d1 tr r hr h rL = + -h( ) ( ) ( )† , that is, bymixing themwithwhite noise.
If wemeasure a system that has undergone such an evolution, we obtain the outcome probabilities
p a A Atr tra ar r= L = Lh h( ) [ ( )] [ ( ) ]† , where A A A d1 tra a a h hL = + -h( ) ( ) ( ) is the dual of the depolarising
channel, which leads precisely to the type of noise set defined in equation (22).

The corresponding incompatibility robustness, as introduced in definition 3, can be computed via the SDPs

G

G A A
d

G B B
d

X A Y B

X X Y Y X Y

X A Y B

A

d
X

B

d
Y

max

s.t. 0, 1

1 tr

1 tr

min 1 tr tr

s.t. , , 0

1 tr tr

tr
tr

tr
tr

, 23A B

G

ab

b
ab a a

a
ab b b

X
Y a

a a
b

b b

a a b b a b

a
a a

b
b b

a

a
a

b

b
b

,
d

, ab ab a a

b b





 




å

å

å å

å å

å å

h

h

h

h h

h h

= = + -

= + -

=

+ +

= = +

+ +

+

h
⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

( )

( )

( ) ( )

( ) ( ) ( )

{ } { }
{ }

† †

where in the following the first formulationwill be referred to as the primal, and the second as the dual. The
primal variablesGab and η are simply themeasurement operators of the parent POVMand the visibility,
respectively. The dual variablesXa andYb are Lagrangemultipliers corresponding to the primal equality
constraints. Note that the normalisation ofG is not enforced as it follows from the other constraints. For an
explicit derivation of the dual problem, see [36], appendix A. Slater’s theorem states that whenever a strictly
feasible point (a point satisfying all the constraints strictly) exists for either the primal or the dual, the duality gap
is zero, thus the primal and dual solutions coincide [22]. In this case, we can take X Ya b d= = , which is a
strictly feasible point of the dual for sufficiently large δ. Thus, the theorem applies and justifies the equality
between the two problems in equation (23). Similar arguments apply to all pairs of primal-dual SDPs thatwe
discuss in this work.

As the noise set NA B,
d defined in equation (22) is invariant under post-processings by linearity of the trace, it

follows from section 2.3 that dh ismonotonic under post-processings. It turns out, however, that dh does not
satisfy the other two natural properties introduced in section 2.3, namelymonotonicity under non trace-
preserving pre-processings and convexity of the inverse; see appendix A for counterexamples. Note that the
monotonicity under pre-processings was incorrectly claimed in [12], proposition 2.

3.1.2. Example
From a result by Busch [38], theorem4.5 on the jointmeasurability of pairs of two-outcome qubit
measurements, also rephrased byUola et almore recently [39], section III C, we get

1

cos sin
. 24dh

q q
=

+q ( )

This value is plotted infigure 4 together with the othermeasures. For completeness and later reference, we give
optimal solutions to both the primal and the dual stated in equation (23)

G

X Y

1

cos sin

cos
2

sin
2

sin
2

cos
2

,

,
1

4 cos sin
, ,

25

z x

x z

z x

z x

z x

z x

 

 









q q

q
s

q
s

q
s

q
s

q q
s s
s s

s s
s s

=
+

- -

+ +

=
+

+ +
- +

+ -
- -

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
⎛
⎝⎜
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟( ) ( )

( )
( )

( )
( )

( )

wherewe have used the notation introduced in equation (21).

3.1.3. Lower bound
Asmentioned before, a lower bound on dh is already known [16, 29–31]. The parent POVMgiven in
equation (17) is indeed a feasible point for the primal in equation (23) togetherwith

d

1

2
1

1

1
. 26h = +

+

⎛
⎝⎜

⎞
⎠⎟ ( )

For a pair A B,( ) of rank-onemeasurements in dimension d 2 , this bound can be improved. Let us
introduce a feasible point for the primal in equation (23)withG of the form (16), where
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d d

d

B
A

d d d

d
A B

2 4 4 tr
tr

,
2 4 4

2
tr tr , and 0. 27

b

a

b

a
ab a b

2 2
2

a
b g d=

- + + -
=

+ - + -
=⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

For a proof that this leads to validmeasurement operatorsGab and for ameasurement-dependent refinement we
refer the reader to appendix C.1.1. This construction gives a lower bound on dh for all pairs of rank-one
measurements. However, since themeasure ismonotonic under post-processings, the bound is actually
universal, i.e. for an arbitrary pair A B,( ) ofmeasurements in dimension dwe have

d d d

d

2 4 4

4 1
. 28A B,

d
2

h
- + + -

-( ) ( )

Importantly, this bound turns out to be strictly better than equation (26), whichwas the best lower bound
known so far.

3.1.4. Upper bound
Following the idea used in [36], we provide a valid assignment of the dual variablesXa andYb for the dual
problem given in equation (23) to get an upper bound on dh , namely,

X
A

f g d
Y

B

f g d
and , 29a

a
b

b2
d

2
d

 
=

-

-
=

-

-

l l

( ) ( ) ( )

where f andλ are defined in equation (18) and g d in equation (19). Here we implicitly assume that f g d¹ , but
one can show that the equality f g d= holds if and only if all POVMelements ofA andB are proportional to , in
which case the pair is trivially compatible (see appendix E.3.1). The resulting upper bound is given by

g

f g

f

f g
1 , 30A B,

d
d

d d
h

l l-
-

= -
-
-

( )

where the last equalitymakes clear that this upper bound is non-trivial whenever f l> (since f g d> from
appendix E.3.1). In the followingwe always implicitly assume that this condition is satisfiedwhenwe discuss the
various upper bounds.

3.2. Incompatibility random robustness
3.2.1. Definition and properties
In this case the noisemodel is defined by themap

n n
N , , 31A B

d

A a

n
d

B b

n

,
r

1 1

A B 
=

= =

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜
⎧⎨⎩

⎫⎬⎭
⎧⎨⎩

⎫⎬⎭
⎞
⎠
⎟⎟

⎫
⎬
⎭

( )

a single element containing the trivialmeasurement, i.e. themeasurement generating a uniformdistribution of
outcomes regardless of the state. It has been investigated inmanyworks [7, 28, 31, 34, 35, 40], and also in the
framework of general probabilistic theories [41, 42].

The corresponding incompatibility robustness, as introduced in definition 3, can be computed via the
SDPs[40]

G
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X X Y Y X Y
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n
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n
Y
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1
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⎩
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( ) ( )

( ) ( ) ( )

{ } { }
{ }

† †

Note that the normalisation ofG is not enforced as it follows from the other constraints.
As the noise set NA B,

r defined in equation (31) is invariant under pre-processings (recall that pre-processings
are unital), it follows from section 2.3 that rh ismonotonic under pre-processings.Moreover, as this set is also
convex and independent of the specific formofA andB (themap Nr is constant), we know from section 2.3 that
1 rh is convex.However, thismeasure is notmonotonic under non outcome number-preserving post-
processings, see appendix A for a counterexample.
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3.2.2. Example
For rank-one projectivemeasurements dh and rh coincide, therefore

1

cos sin
. 33r dh h

q q
= =

+q q ( )

3.2.3. Lower bound
As rh is notmonotonic under post-processings, we cannot use a solution for rank-onemeasurements as in
section 3.1.3 to deduce a general lower bound. Thus, we consider an arbitrary pair A B,( ) ofmeasurements in
dimension d andwe introduce a feasible point for the primal in equation (32)withG of the form (16), where

n

n

n

n
, , 0, and 0 34b

A

B
a

B

A
aba b g d= = = = ( )

fromwhichwe obtain the bound

n n
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2
1

1

1
. 35A B
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,

r h +
+

⎛
⎝⎜

⎞
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The positivity of this parent POVM follows from
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A
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B

n
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n

n
A
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n
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n
B0 , , , 36A B
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A
a b
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B
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where the last inequality is due to A Aa a
2  and B Bb b

2  .

3.2.4. Upper bound
In the case of rh we choose the dual variables as

X
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f g d
Y
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f g d
and , 37a
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b2
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2
r
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l l

( ) ( ) ( )

where f andλ are defined in equation (18) and g r in equation (19). Here we implicitly assume that f g r¹ , but
one can show that the equality f g r= holds if and only if all POVMelements ofA andB are proportional to , in
which case the pair is trivially compatible (see appendix E.3.1). The resulting upper bound is given by

g

f g
. 38A B,

r
r

r
h

l -
-

( )

3.3. Incompatibility probabilistic robustness
3.3.1. Definition and properties
In this case the noisemodel is defined by themap

p q p q p qN , 0, 0, 1 , 39A B a d a
n

b d b
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a b
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b
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A B    å å= = == =
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where pa a{ } and qb b{ } are probability distributions. Thismeasure has been investigated inmanyworks
[12, 16, 29, 31, 34, 35, 42–45], and also in the framework of general probabilistic theories [46, 47].

The corresponding incompatibility robustness, as introduced in definition 3, can be computed via the SDPs
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Note that, in order tomake the problem linear in its variables, we have introduced sub-normalised probability
distributions p p1a ah= -˜ ( ) and q q1b bh= -˜ ( ) . Note also that the normalisation ofG and the constraint

1h are not enforced as they follow from the other constraints. As the noise set NA B,
p defined in equation (39)

contains both NA B,
d of equation (22) and NA B,

r of equation (31), the constraints of the primal in equation (40) are
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looser than the ones in equations (23) and (32). By duality, the constraints of the dual in equation (40) are then
tighter than the ones in equations (23) and (32), which can indeed be seen by plugging suitable convex
combinations of the constraints Xtr ax and Ytr bu into X A Y B1 tr tra a a b b b  x u+ å + å +( ) ( ) .

As the noise set NA B,
p defined in equation (39) is invariant under pre- and post-processings (by unitality and

linearity, respectively), it follows from section 2.3 that ph ismonotonic under pre- and post-processings.
Moreover, as this set is also convex and independent of the specific formofA andB (themap Np is constant), we
know from section 2.3 that 1 ph is convex. Thus, ph is thefirstmeasure that satisfies all the properties
introduced in section 2 except for concavity.

3.3.2. Example
The dual feasible points from section 3.1.2 satisfy the additional trace constraints of the dual given in
equation (40). Thus, themeasures dh and ph coincide on this family ofmeasurements:

1

cos sin
. 41p dh h

q q
= =

+q q ( )

Note, however, that dh and ph differ in general, even for rank-one projectivemeasurement pairs (see section 4.3
for an explicit example).

3.3.3. Lower bound
Since the noise set NA B,

p contains both NA B,
d and NA B,

r for all A B,( ), lower bounds on dh and rh immediately
apply to ph .

3.3.4. Upper bound
In the case of ph we choose the dual variables as

X
A

f g d
Y
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f g d
X Y, , max tr , and max tr , 42a
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where f andλ are defined in equation (18) and gp in equation (19). Here we implicitly assume that f gp¹ , but
one can show that the equality f gp= holds if and only if all POVMelements ofA andB are proportional to , in
which case the pair is trivially compatible (see appendix E.3.1). The resulting upper bound is given by

g

f g
. 43A B,

p
p

p
h

l -
-

( )

3.4. Incompatibility jointlymeasurable robustness
3.4.1. Definition and properties
In this case the noisemodel is defined by themap

N JM , 44A B d
n n

,
jm ,A B= ( )

the set of jointlymeasurable pairs of POVMswith nA and nB outcomes in dimension d. To the best of our
knowledge, thismeasure has only been considered in [40], section II C.

The corresponding incompatibility robustness, as introduced in definition 3, can be computed via the SDPs
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Note that the noise POVMs donot explicitly appear in the primal problem, since optimising over jointly
measurable pairs is equivalent to optimising over the parentmeasurement, here denoted byH. Tomake the
problem linear in its variables, we have introduced a sub-normalised parent POVMof the noise,
H H1 h= -˜ ( ) . Note also that the constraint 1h is not enforced as it follows from summing up one of the
marginal constraints.

In analogywith ph , themeasure jmh also satisfies the properties introduced in section 2, namely
monotonicity under pre- and post-processings, and convexity of the inverse.
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3.4.2. Example
The value of thismeasure for a pair of rank-one projective qubitmeasurements is strictly higher than for the
previousmeasures, whenever the pair is incompatible. Specifically,

2

1 cos sin
. 46jmh

q q
=

+ +q ( )

This value is plotted infigure 4 together with the othermeasures. Interestingly, even for such a simple example
the primal problem given in equation (45) admitsmultiple optimal solutions.More specifically, we obtain a
continuous one-parameter family, which reads
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and s is a free parameter taken from the interval 0, 1[ ] to ensure the positivity of the elements ofH. Different
values of s correspond to applying noise along different axes: for s 0= the noise only affects theX direction,
while for s 1= it only affects theZ direction. A feasible optimal point for the dual given in equation (45) reads
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3.4.3. Lower bound
Let us consider a pair A B,( ) of rank-onemeasurements in dimension d. Finding a feasible point for the primal
in equation (45) is not an easy task, as we have tofind two parent POVMs at once. ForGab, wemake the same
choice as for dh , i.e. equation (27) in section 3.1.3.We choose the subnormalised noise POVM H̃ to be of the
form (16)with

d d

d

B
A

d d d

d
A B

2 4 4 tr
tr

,
2 4 4

2
tr tr , and 0, 49

b

a

b

a
ab a b

2 2
2

a
b g d=

- - + -
=

+ + + -
=⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

which leads to
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Details about this specific point can be found in appendix C.4 togetherwith ameasurement-dependent
refinement. As jmh ismonotonic under post-processings, this bound on pairs of rank-onemeasurements
extends to all pairs ofmeasurements in dimension d.

3.4.4. Upper bound
Consider the following feasible point for the dual given in equation (45):
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where f andλ are defined in equation (18) and g jm in equation (19). Herewe implicitly assume that f g jm¹ , but
one can show that the equality f g jm= holds if and only if all POVMelements ofA andB are proportional to , in
which case thepair is trivially compatible (see appendix E.3.1). The above feasible point immediately implies that

g

f g
. 52A B,
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3.5. Incompatibility generalised robustness
3.5.1. Definition and properties
In this case the noisemodel is defined by themap

N POVM , 53A B d
n n

,
g ,A B= ( )

the set of all POVMpairs with nA and nB outcomes, respectively, in dimension d. To the best of our knowledge,
thismeasurewas first introduced in [21] and studied further in [7, 33, 40, 48]. Recently, it was given an
operationalmeaning through state discrimination tasks [13, 49, 50].

The corresponding incompatibility robustness, as introduced in definition 3, can be computed via the SDPs
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Note that in the primal, the noise POVMsdonot appear, becausewe can explicitly solve for these variables,
which gives rise tomatrix inequalities instead of equalities for themarginals. These looser constraints give us
additional freedom and allow us to employ operator inequalities. Note also that the constraint 1h is not
enforced as it follows from summing up one of themarginal constraints. The constraints in the primal in
equation (54) are looser than in the primal in equation (45), because the noise set is larger for allmeasurement
pairs. In turn, the feasible set of the dual problem shrinks, as the dual constraints X 0a  and Y 0b  are tighter
than X Y 0a b + .

In analogywith ph and jmh , themeasure gh also satisfies the properties we introduced in section 2, namely
monotonicity under pre- and post-processings, and convexity of the inverse.

3.5.2. Example
The value of thismeasure for the running example is even higher than for the previousmeasures, specifically

2 1

2 cos sin
. 55gh

q q
=

+
+ +q ( )

This value is plotted infigure 4 togetherwith the othermeasures.A feasible point for theprimal in equation (54) reads
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and for the dual,
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3.5.3. Lower bound
For a pair A B,( ) of rank-onemeasurements in dimension d, let us introduce a feasible point for the primal in
equation (54)withG of the form (16), where

d

B
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so thatwe obtain the bound
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Aproof of feasibility of this specific point is given below. Formore details, see appendix C.5which also contains a
measurement-dependent refinement. As gh ismonotonic under post-processings, this bound on pairs of rank-
onemeasurements extends to all pairs ofmeasurements in dimension d.
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The novelty in equation (58), as compared to the parent POVMsused for the othermeasures, is the fact that δ
is non-zero.What enables us to introduce this term is the extra freedom in the primal in equation (54), namely,
the inequalities in themarginal constraints instead of equalities, which allows us to analyse themarginals for
non-zeroδ.

For the proof of feasibility, wewrite the parent POVMdefined by the coefficients in equation (58) as

G
d d
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SinceAa andBb are rank-one, we canwrite A A Ptra a a= ( ) and B B Qtrb b b= ( ) for some Pa a aj j= ñá∣ ∣and
Qb b by y= ñá∣ ∣. Therefore, we can rewrite (60) as
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which shows thatG is a valid POVM.
Next we should compute itsmarginals. Thefirst one reads

G
d d

dA A d A d A B A B
1

4
tr 4 , 62

b
ab a a a a

b
b a b

1
2

1
2å å=

+
+ + + +

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) ( ) ( )

where the terms are ordered as in equation (60) for clarity.Moreover, we have that for every xñ∣ ,
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wherewe used theCauchy–Schwarz inequality. Therefore, d B A B Ab b a b a
1 2 1 2 å , which togetherwith

A Atr a a ( ) enables us to lower bound themarginal (62), namely,
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By symmetry of equation (60) the same conclusion holds for the secondmarginal, which shows that the point
defined in equations (58) and(59) is indeed feasible.

3.5.4. Upper bound
Consider the following feasible point for the dual given in equation (54):
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where f andλ are defined in equation (18). This immediately implies that

f
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g h
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3.6. Relations between themeasures
Certain inclusions between the noise sets defined in equations (22), (31), (39), (44), and (53), imply an ordering
of themeasures.More specifically, from

N N N N N , 67A B A B A B A B A B,
d

,
r

,
p

,
jm

,
gÈ Í Í Í( ) ( )

we conclude that

max , 68A B A B A B A B A B,
d

,
r

,
p

,
jm

,
g  h h h h h{ } ( )

for everypair A B,( ). It turnsout that dh and rh are incomparable (see appendixA for an example). Amoredetailed
analysis allowsus toprove that someof the inequalities given in equation (68) are in fact strict. Specifically, in
appendixBwederive improved relationsbetween dh and jmh , dh and gh , and rh and gh ,which imply that for apair of
incompatiblemeasurements A B,( ) the separationsbetween thesemeasures are strict, i.e. A B A B,

d
,

jmh h< , A B A B,
d

,
gh h< ,

and A B A B,
r

,
gh h< .Moreover, the examples given in section3.7 showthat in somecases dh coincideswith ph , aswell as

rh with ph and jmh with gh . Thequestionwhether the separationbetween ph and jmh is strict ornot is left open.
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3.7.Mutually unbiased bases
Wehavementioned earlier thatMUBs constitute a standard example of a pair of incompatiblemeasurements on
a d-dimensional system. Indeed, theymight seem like natural candidates for themost incompatible pair of
measurements in dimension d. In this sectionwe show that for a pair ofMUBs all the previously introduced
measures can be computed analytically. The specific values we obtainwill be compared against the findings of
section 4, inwhichwe look for themost incompatible pairs ofmeasurements.

For a pair A B,MUB MUB( ) of projectivemeasurements onto twoMUBs in dimension d (see section 2.1), we
will use dMUB

*h ( ) as a shorthand for A B,MUB MUB*h . Note that although in higher dimensions not all pairs ofMUBs
are unitarily equivalent, they nevertheless give the same value for all themeasures studied in this work.Hence,
for thesemeasures the quantity dMUB

*h ( ) turns out to bewell-defined.
In dimension d 2= a pair ofMUBmeasurements is a special case of the example introduced in section 2.6,

corresponding to 4q p= . Therefore equations (24), (46), and (55) imply that
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For a pair of projectivemeasurements onto twoMUBs in dimension d 3 , the parameters given in
equations (18) and (19) equal f 2= , d1 1l = + , g g g d2d r p= = = , and g 0jm = . It turns out that for
MUBs the upper bounds given in equations (30), (52), and (66) are actually tight. Therefore, the onlymissing
component is a feasible point for the primal.

For dh and rh our feasible solution consists of
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This parent POVM, inspired by [39], section IV, is of the formof equation (16). The positivity of these operators
can be confirmed using the techniques presented in appendix C and let us stress that the proof crucially relies on
the fact that the bases aremutually unbiased. For ph wemust explicitly include theweights andwe choose them
to be uniform p q d1a b= = for all a b, . This assignment saturates the upper bound given in equation (30),
which implies that

d d d
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For gh we use the same parent POVM, but themoreflexible formof noise allows for higher visibility:
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For jmh wemust supplement our solutionwith a sub-normalised parent POVMof the noise pair
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which has already been used in [49], and is of the formof equation (16). This construction is only valid for
d 3 , because for d 2= the corresponding noise pair A d 1a a - -{( ) ( )} and B d 1b b - -{( ) ( )} is not
jointlymeasurable (see equation (47) for a family of optimal feasible points for the primal). In both cases the
visibility given in equation (73) saturates the upper bounds(55) and (46), respectively, which implies that for all
d 3 , we have

d d
d
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. 75MUB

jm
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Note that the value dMUB
gh ( )was already derived in [21]. Also notice that equation (75) together with

equation (59) implies thatMUBs are among themost incompatiblemeasurement pairs with respect to gh in
every dimension.

3.8. Summary
In table 1we give a compact summary of the results for the differents robustness-basedmeasures of
incompatibility: definition of the noise sets, properties introduced in section 2.3, lower and upper bounds, and
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value for a specific example of two projectivemeasurements ontoMUBs (see section 3.7). Infigure 4we plot the
values of *hq achieved by a pair of rank-one projectivemeasurements acting on a qubit.

4.Most incompatible pairs ofmeasurements

In this section, we address the question of themost incompatiblemeasurement pairs in dimension d, for all the
measures introduced in section 3. This question has already been raised and partially answered in previous
works: in infinite dimension for ph in [29] and numerically for dh and gh in [33]. Perhaps surprisingly, wefind
that the answer depends onwhich incompatibilitymeasurewe consider.We have already seen that projective
measurements onto a pair ofMUBs are among themost incompatible pairs under gh in every dimension.On the
other hand, for themeasures dh and ph we give explicit constructions of pairs which aremore incompatible than
MUBs for any dimension d 3 . For jmh , our study is inconclusive, andwe do notfindmeasurements that are

Table 1. Summary of the results on the depolarising, random, probabilistic, jointlymeasurable, and general incompatibility robustness of
pairs of POVMs. Recall that d is the dimension, while nA and nB are the outcome numbers. ‘Post’ and ‘Pre’ stand for post-processing and pre-
processingmonotonicity, respectively, see section 2.3. ‘Cvx’ stands for the convexity of the inverse of themeasure, see section 2.3. For a pair
of rank-one projectivemeasurements A B,( ), the quantities appearing in the upper bounds are f 2= , A Bmax max Spa b a b,l = +{ ( )},
g A Bmin min Spa b a b

jm
,= +{ ( )}, and g g g d2 ;d r p= = = see equations (18) and (19) for definitions.

Figure 4.The value of all the differentmeasures (see table 1) for a pair of rank-one projectivemeasurements on a qubit such that the
angle between the Bloch vectors of thesemeasurements equals 2 ;q see equation (20). Note that the rightmost pointwhere 4q p=
corresponds to qubitMUBs, which demonstrates the fact thatMUBs are themost incompatible rank-one projective qubit
measurements under all thesemeasures. Frombottom to top, the curves are d r ph h h= = from equation (24), then jmh from
equation (46), andfinally gh from equation (55). Although dh , rh , and ph coincide in this case, this is not the case in general.
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more incompatible thanMUBs in any dimension. First we discuss the special case of rh , thenwe solve the qubit
case for all themeasures, and finally we discuss higher dimensions.

4.1. Incompatibility random robustness
Recall that in order tofind themost incompatiblemeasurement pair in dimension d regardless of the outcome
numbers, it is enough to consider rank-one POVMs if themeasure in consideration ismonotonic under post-
processings. Aswe see from table 1, this is not the case for rh , which, atfirst glance,makes this problemhard to
tackle.However, what turns out is that for thismeasure the answer is trivial. Consider a pair ofmeasurements
A B,( ) and increase artificially the number of outcomes by adding zero POVMelements to bothmeasurements.
Let us add these elements one-by-one, and denote the POVMpair at step i by A B,i i( ). In appendix C.2.2we
show that if 2l < and f2 1l - <( ) , we have

f
lim

2

2 1
, 76i A B,

r
i i h

l
l
-

- -
¥ ( ) ( )

where f andλ are defined in equation (18). It is then clear that whenever f 2= and 2l < (e.g. any pair of rank-
one projectivemeasurements onto two bases that do not have any eigenvectors in common), this limit reaches 1

2
.

As it coincides with the trivial lower boundmentioned in section 2.4, this shows that dr 1

2
c =( ) for d 2 . In

the rest of this section, wewill not discuss thismeasure anymore.However, recall that for pairs of rank-one
projectivemeasurements rh coincides with dh , and therefore some of the results later in this section also apply to
thismeasure.

4.2.Qubit case
In section 3.7we have shown that for a pair ofMUBs all the incompatibilitymeasures can be computed
analytically.What is special in the case of d 2= is that these values coincide with the universal lower bounds (see
table 1). Thismeans that pairs of projectivemeasurements ontoMUBs are among themost incompatible pairs
under dh , ph , jmh , and gh in dimension d 2= . Formally, using the notation introduced in section 2.4, we have
that

2 2
1

2
, 2 2 2 1 , and 2

1

2
1

1

2
. 77d p jm gc c c c= = = - = +

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( ) ( ) ( )

For dh , this was known for pairs of two-outcomePOVMs [36], appendix G.
It is important to point out that there exist other pairs ofmeasurements reaching theseminimal values: from

the upper bounds given in appendix E.3.2, it is clear that any rank-one POVMpair such that A a aa = ñá∣ ∣and
the Bloch vectors ofB lie in the xy-plane of the Bloch sphere gives rise to the same value asMUBs. As an example,
onemight choose A a aa = ñá∣ ∣andB as a trinemeasurement in the xy-plane.

In appendix E.4, we extend this result to triplets of qubitmeasurements. In this case, we show that triplets of
projectivemeasurements ontoMUBs are among themost incompatiblemeasurements under dh , ph , jmh , and

gh in dimension d 2= .
Also note that the value of 2dc ( ) (respectively its equivalent for threemeasurements) has interesting

consequences for Einstein–Podolsky–Rosen steering. This is because jointmeasurability is intimately linked to
this notion [6, 7], as the depolarisingmap in dh can be equivalently applied to the state wewish to steer, due to its
self-duality.We refer to [36], appendix F for details on this connection and onlymention here that our results
show that in a steering scenariowith two (respectively three)measurements and an isotropic state of local
dimension two, POVMsdonot provide any advantage over projectivemeasurements.

4.3.Higher dimensions
4.3.1. Dimension d 3=
In the previous sectionwe have seen that in dimension d 2= pairs of projectivemeasurements onto twoMUBs
are among themost incompatible pairs ofmeasurements under dh , ph , jmh , and gh . Starting fromdimension
d 3= , the picture changes dramatically. To show this, we plot the (numerical) value of these fourmeasures for a
particular one-parameter path of rank-one projectivemeasurements in dimension three, see figure 5. It is
evident from this plot that, contrary to the qubit case,MUBs do not achieve the lowest value of the
incompatibility robustness under dh and ph . Instead, the lowest value among rank-one projective
measurements is reached by other bases, whichwe have found through an extensive numerical search among
pairs of rank-one projectivemeasurements, using a parametrisation of unitarymatrices in dimension three [51].

In this sectionwe only look at rank-one projectivemeasurements. Due to the unitary invariance of all the
measures we assumewithout loss of generality that thefirstmeasurement corresponds to the computational
basis A a aa = ñá∣ ∣, so that we only need to specify the secondmeasurementB.
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For dh , the optimum is reached, among others, by

B U b b U U, where

1

2

1

2
0

1

2

1

2
0

0 0 1

. 78b
qMUB = ñá =

-

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
∣ ∣ ( )†

Note that it is simply a pair of qubitMUBs on a two-dimensional subspace togetherwith a trivial third outcome
on the orthogonal subspace. The incompatibility depolarising robustness of this pair, 3 0.6602qMUB

dh »( ) (see

equation (80) below for an analytical value) outperforms substantially not only 3 0.6830MUB
dh »( ) , but also the

minimal value 0.6794 found numerically in [33], table 4.
For ph , the optimum is reached, among others, by

B U b b U U, where

1

2

1

2

1

2
1

2

1

2

1

2

0
1

2

1

2

, 79b
dev = ñá = - -

-

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

∣ ∣ ( )†

which gives 0.6813dev
ph » , showing a slight deviation from 3 0.6830MUB

ph »( ) .

For jmh , the numerical search did not yield an improvement on theMUB value, and for gh we already have
an analytical proof thatMUBs are among themost incompatible pairs in every dimension.

4.3.2. Dimension d 4
For dh , the qubitMUB structure found in dimension d 3= has several natural generalisations in higher
dimensions. The general idea is to divide theHilbert space into orthogonal subspaces of various dimensions, and
define themeasurements as eitherMUBs or trivialmeasurements on the different subspaces. Among these, we
found numerically that themost incompatible construction is to define a pair of qubitMUBs on a two-
dimensional subspace, while on the orthogonal subspace the remainingmeasurement operators turn out to be
irrelevant. For simplicity, we choose trivialmeasurements on the orthogonal subspace, that is, A a aa = ñá∣ ∣and
B b bb = ñá∣ ∣ for a b, 3 , while A A,1 2{ }and B B,1 2{ } is a pair ofMUBs on the qubit subspace. For this
construction, we get a lower bound in equation (C13) and an upper bound in equation (C23), which give the

Figure 5.The (numerical) value of the fourmeasures along a one-parameter path of rank-one projectivemeasurements in dimension
d 3= . The pair A B,dev dev( ) is defined in equation (79), A B,qMUB qMUB( ) in equation (78), and A B,MUB MUB( ) at the beginning of this
section. Details about the specific path used can be found in appendixD. Importantly, on this path the pair A B,MUB MUB( ) achieves the
minimumvaluewith respect to gh and jmh , but it is outperformed by A B,dev dev( )with respect to ph and by A B,qMUB qMUB( )with
respect to dh .
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same value and therefore the incompatibility depolarising robustness of this pair is

d
d

d
1

2
1

2

2
. 80qMUB

d
MUB
dh h= +

+
<

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

Infigure 6we plot the improvement overMUBs that this construction achieves. In particular, it is worth
stressing that, in contrast to a pair ofMUBs, this construction exhibits the same asymptotic scaling as the lower
bound derived in section 3.1.3.More specifically, expanding the right-hand side of equation (28) gives

d
O d

1

2

1

2
, 812+ + -( ) ( )

whereas

d
d

O d
1

2

1

2
, 82qMUB

d 2h = + + -( ) ( ) ( )

d
d

O d
1

2

1

2
. 83MUB

d 1h = + + -( ) ( ) ( )

The reasonwhy this pair performs sowell is the fact that the twomeasurements are highly incompatible on the
qubit subspace, while the noise is spread uniformly over the entire space.Note that an analogous structure has
been foundwhile searching for the quantum state whose nonlocal statistics are themost robust towhite noise
[52]. Supported by the optimisation in dimension d 3= togetherwith one billion random instances in
dimensions d 4= and d 5= , and the asymptotic scalings, we conjecture that this pair is among themost
incompatible pairs of rank-one projectivemeasurements under dh for all dimensions. For general pairs of
measurements we leave the question open.

For ph ,fixingMUBs on a qubit subspace no longer determines the incompatibility robustness anymore, as
the noise can nowbe adjusted to have different weights on the different subspaces. In fact the construction that
uses trivialmeasurements on the orthogonal subspace does not surpass the d-dimensionalMUBvalue anymore.
However, employing some other rank-one projectivemeasurements on the orthogonal subspace gives rise to
measurements that outperformMUBs. In even dimensions, by decomposing the space intomany qubit
subspaces and by havingMUBs on each of them,we can reach again the value of equation (80). For instance in
dimension d 4= thismeans

Figure 6. Illustration of the improvement overMUBs for dh and ph when the dimension d ranges from2 to 16. From top to bottom
are depicted theMUBvalue (equations (72) and (75)), the lowest valuewe found for ph (that is, equation (80) for even dimensions and
numerical results based on an analytical construction described in themain text for odd dimensions), the lowest valuewe found for dh
(equation (80)), and the lower bound (28).
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B U b b U U, where
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The parent POVM is then the same as for dh whereas the construction of the dual variables is explained in
appendix C.1.2.Our conjecture on dh then translates straightforwardly to ph in even dimensions as d ph h . In
odd dimensions, this construction is not applicable.We conjecture that in dimension d 3= the pair defined in
equation (79) is among themost incompatible pairs of projectivemeasurements under ph . In higher odd
dimensions, taking this pair on a qutrit subspace together withMUBs on all remaining qubit subspaces always
outperformsMUBs (see figure 6). As theremight be somemore involved construction giving a lower value, we
leave the question of the lowest value of ph open for odd dimensions higher than d 5= . Note nonetheless that
with one billion randompairs of rank-onemeasurements in dimension d 5= wewere not able to surpass it.

For jmh , encouraged by the optimisation in dimension d 3= and the one billion random sampling in
dimensions d 4= and d 5= , we conjecture that pairs ofMUBs in any dimension cannot be outperformed by
any pair of rank-one projectivemeasurements.

Regarding gh , the incompatibility generalised robustness of a pair ofMUBs is precisely the universal lower
bound that we derived in equation (59). Thismeans thatMUBs are among themost incompatible pairs among
all pairs ofmeasurements in dimension d, regardless of the number of outcomes. Formally, using the notation
introduced in section 2.4, thismeans that

d
d

1

2
1

1
. 85gc = +

⎛
⎝⎜

⎞
⎠⎟( ) ( )

5. Conclusions

In this workwe develop a unified framework to study various robustness-basedmeasures of incompatibility of
quantummeasurements.Wefind that some of thewidely usedmeasures do not satisfy some natural properties,
whichmeans that one should be cautiouswhen dealingwith them. In particular, they are not suitable for
constructing a resource theory of incompatibility.Moreover, we find that themost incompatiblemeasurement
pair depends on the exactmeasure thatwe use, evenwhen all the addressed natural properties are satisfied.We
are able to show that for one of themeasures a pair of rank-one projectivemeasurements ontomutually unbased
bases is among themost incompatible pairs, but also that this is not the case for some othermeasures. Ourwork
shows that the differentmeasures exhibit genuinely different properties andwe conclude that despite a
substantial effort dedicated to the topic, our understanding is still rather limited.

One natural future direction arising fromourworkwould be to obtain a complete characterisation of the
most incompatiblemeasurement pairs in all scenarios for all themeasures.We expect, however, that thismight
be rather difficult, so onemight start by restricting the task to natural scenarios, e.g. d n nA B= = or even just
searching over rank-one projectivemeasurements.

Many results in this paper can be straightforwardly extended to the case ofmore than twomeasurements.
We refer to appendix E for the SDP formulations of the variousmeasures, the upper bounds and a few lower
bounds. This could serve as a good starting point for future research.

A last promising research direction arising fromourwork concerns the possibility of constructing a resource
theory of incompatibility. Are some of the existingmeasures suitable as resourcemonotones? Are there some
additional conditions that one should require?What is themost general class of operations that preserves joint
measurability? Answering these questionswill help us to understand how to quantify and classify
incompatibility in ameaningful and operationalmanner.
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AppendixA. Counterexamples

In this appendix, we prove some claimsmade in themain text through explicit examples. Note that some of the
values in this section are obtained via numerics, but as these values are solutions of SDPs, they are exact up to
machine precision.

Counterexample 1.Themeasure dh is notmonotonic under pre-processings.

Note that an incorrect proof of this statement appeared in [12], proposition 2. The issuewith the argument is
that it implicitly assumes pre-processings to be trace-preserving. The following counterexample exploits this
loophole. Consider a pair of qubitMUBsmeasurements:

A A B B1 0
0 0
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For these the value 1 2A B,
dh = is well-known. See for example [39], section III A or the example in themain

text (section 3.1.2). Let us create new qutritmeasurements AL and BL by pre-processing, specifically, by
applying themap K K K K. . .1 1 2 2L = +( ) ( ) ( )† †, where
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d
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Crucially, A Atr 1 2 tr2 2= ¹ = L and similarly forB. From the following feasible point for the dual in (23):
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we get the bound
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Counterexample 2.Themeasure 1 dh is not convex.

Consider the following pairs A B,0 0( ) and A B,1 1( ) of qubitmeasurements
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In [53], jointlymeasurable pairs of two-outcome qubitmeasurements are fully characterised. From this, we can
compute
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fromwhich the convexity of 1 dh is immediately negated as
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Note that the non-concavity of dh follows from the non-convexity of 1 dh .

Counterexample 3.Themeasure rh is notmonotonic under post-processings.

Consider a pair A B,( ) of qubitMUBsmeasurements, as given in equation (A1). Let us create a new three-
outcomemeasurement Ab by the post-processing
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The incompatibility random robustness of Ab andB is lower than 1 2 , which can be seen by the feasible point
for the dual in (32)
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Counterexample 4.Themeasures dh and rh are incomparable.

Using [53] and the pair ofmeasurements A B,0 0( ) defined in equation (A5), one gets
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To get the other direction, we consider a pair of two-outcomemeasurements in dimension d 3= , namely,
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Counterexample 5.None of themeasures defined in themain text is concave.

Consider the following pairs A B,0 0( ) and A B,1 1( ) of qubitmeasurements
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where
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With this example, the concavity of allfivemeasures studied in themain text is negated, that is,

2
, A15A B A B

,

, ,
A A B B0 1
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h
h h

<
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+ + ( )

as one can confirmby solving the respective SDPs up tomachine precision.

Appendix B. Relations between themeasures

In themain text we observed that inclusions between the different noise sets immediately imply certain
inequalities between themeasures.More specifically, equation (68) states that

max , . B1A B A B A B A B A B,
d

,
r

,
p

,
jm

,
g  h h h h h{ } ( )

In this appendixwe show that these relations can be strengthened, which leads to strict separations between
some of themeasures.

In order to tighten the inequality between dh and jmh , we take the optimal point for the primal for dh in
equation (23), and construct from it a feasible point for the primal for jmh in equation (45). Specifically, for a pair
ofmeasurements A B,( )we subtract some fraction of the original POVMelement from the noise reaching the
optimum in the primal for dh in equation (23), such that the remaining noise is jointlymeasurable and can thus
serve as a feasible point for the primal for jmh in equation (45):
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and similarly forBb. The challenge now is to determine the largest value of ò for which the noise pair
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is jointlymeasurable. This can be done by finding rank-one POVMswhich can be post-processed to giveA and
B, respectively. Let Rr r{ } be a rank-one POVMwhich under post-processing Rb gives Aa a{ } and similarly let Ss s{ }
give Bb b{ } under Sb . The parent POVMgiven in equation (49) implies that the noise pair
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Nownote that A a r Ra r R rb= å ( ∣ ) implies

a r
R R

d

A A

d

tr tr
. B6

r
R

r r a a 






å b

-
-

=
-

-
( ∣ ) ( ) ( ) ( )

Clearly, if we apply the post-processings Rb and Sb to the noise pair given in equation (B4), wewill obtain the
noise pair given in equation (B3) for the same value of ò. Since post-processings preserve jointmeasurability we
deduce that

d d d

2 1

4 4
. B7A B

A B
A B,

d ,
d

2 ,
jmh

h
h+

-

+ + -

( ) ( )

In order to tighten the inequality (B1) between dh and gh , we take the optimal point for the primal for dh in
equation (23), and construct from it a feasible point for the primal for gh in equation (54). Specifically, we use

A Atr a a ( ) and B Btr b b ( ) to obtain

26

New J. Phys. 21 (2019) 113053 SDesignolle et al



A A
d d

A1 tr
1

B8A B a A B a A B
A B

a,
d

,
d

,
d ,

d
 h h h

h
+ - +

-⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

and a similar relation forBb. These together imply that
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1
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In order to tighten the inequality (B1) between rh and gh , we take the optimal point for the primal for rh in
equation (32), and construct from it a feasible point for the primal for gh in equation (54). Specifically, we use

Aa  and Bb  to obtain
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and a similar relation forBb. These together imply that
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A B
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h
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Note that all the above improved relations are saturated by pairs ofMUBs in dimension two, see section 3.7.

AppendixC. Bounds on the differentmeasures

In this appendixwe provide details about various bounds that we introduce in themain text, namely
equations (28), (30), (50), and (59).Moreover, we providemeasurement-dependent refinements of the lower
bounds andwe generalise the upper bound on dh , rh , and ph for certain classes ofmeasurements with some
specific structures.

Wewill use the ansatz defined in equation (16), but only for the case of rank-onemeasurementsA andB.
Note that in this case A B A A B A A Atr tra b a a b a a a

1 2 1 2 = µ( ) , and similarly, B A B Bb a b b
1 2 1 2 µ . Therefore, we

canwrite equation (16) as

G A B A B, , C1ab a b ab a ab b aba b gµ + + +{ } ( ˜ ˜ ) ( )
where the proportionality constant is fixed by the normalisation, andwe introduced the newparameters abã and

abb̃ that nowdepend on both indices. Clearly, the operator is non-trivial only on the subspace spanned by the
eigenvectors ofAa andBb, which allows us to compute its spectrum. The eigenvalues of (C1) are then

C2

A B A B A B A B B A
1

2
tr tr 2tr tr tr 4tr tr tr ,ab a ab b a b ab a ab b a b ab b ab a ab

2a b a b a b g+ +  - + + + +

( )
( ˜ ˜ ( ) ( ˜ ˜ ) ( )( ˜ )( ˜ ) )

togetherwith abg when d 3 .

C.1. Incompatibility depolarising robustness
C.1.1. Lower bound. For a pair A B,( ) of rank-onemeasurements, an ansatz of the form (C1) that is easy to
analyse is defined by x Btrab ba =˜ , x Atrab ab =˜ , and y A Btr trab a bg = , so that

G
dx d y

A B x A B B A y A B
1

2 1
, tr tr tr tr . C3ab a b a b b a a b2

=
+ +

+ + +( ) ({ } ( ) ) ( )

Clearly if either A 0a = or B 0b = , we have G 0ab = , so in the followingwe restrict ourselves to the case
A Btr tr 0a b > . From equation (C2)wededuce that in order to have G 0ab  , we should have

y x c x c y c
A B

A B
0 and 1 0, where

tr

tr tr
. C4ab ab ab

a b

a b

2 +  + + =( ) ( ) ( )

For x 1 - the second constraint is tighter with theminus signwhich gives

y x c c c1 1 . C5ab ab ab - - + -( ) ( ) ( )
For afixed cab this defines a half-plane in the x y,( ) plane. Taking the intersection of all the half-planes
corresponding to c 0, 1ab Î [ ]yields the region of x y,( ) for x 1 - which is allowed for all possible
measurements. To explicitly characterise the regionwemaximise the right-hand side of equation (C5) over
c 0, 1ab Î [ ] for everyfixed value of x 1 - . Since the expression is a quadratic function of cab themaximum is
achieved at c x1 2ab = +( ) if this value lies in the range 0, 1[ ]or at one of the endpoints c 0ab = , c 1ab = . A
straightforward case-by-case analysis yields the allowed region for x 1 - .
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For x 1 - the tighter constraint reads

y x c c c1 1 C6ab ab ab - + - +( ) ( ) ( )
and the same procedure leads to the allowed region for x 1 - . Combining the two results gives the overall
allowed region:
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x x
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over whichwewant tomaximise the objective function of the primal in equation (23), that is,

dx

dx d y
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2 1
. C8

2
h =

+
+ +( ) ( )

Since the right-hand side increases as y decreases, themaximum is reached on the boundary of the allowed
region. Thenwe can plug ywith equality in equation (C7) into the function (C8) and differentiate the resulting
single variable functionwith respect to x to obtain the following optimal assignment:

x
d d

d
y

d d d

d

2 4 4
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2 4 4

2
, C9

2 2
2
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⎠
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which corresponds to the feasible point presented in equation (28) of themain text. It is easy to check that this
choice of x and y saturates equation (C5) for a particular value of cab, whichwe refer to as the critical overlap

c
d d d

d d

2 4 4

2

1
. C10crit

d
2

=
- + + - ( )

Note that this coincides with theMUBoverlap only in dimension d 2= .
There is an easyway to refine this bound in ameasurement-dependent way: instead of requiring that

equation (C5) holds for all values c 0, 1ab Î [ ], we only require that it holds for the values that appear for the
specific pair of rank-onemeasurements we consider. Imposing fewer constraintsmeans thatwe are optimising
over a larger region, sowemight hope to reach a higher value of the objective function.

If we only care about afinite number of overlaps cab, the lower boundary of the relevant region is piecewise
linear (see figureC1). If one of the overlaps equals the critical one, the bound cannot be improved, so in the
followingwe assume that none of the overlaps equals the critical one. It turns out that to determine the optimal
assignment of x and ywe only need to know the value of the largest overlap that is smaller than the critical one,
whichwe denote by c d

-, andwhether there are any overlaps larger than the critical one. If there are overlaps larger

FigureC1. Illustration of themeasurement-dependent refinement of the lower bound on dh . The upper curve is the boundary of the
allowed region defined in equation (C7), while the three lines are the boundaries of half-planes defined in equation (C5) for three
different overlaps c c cd

crit
d d< <- +. Note that the arrows indicate the gradient of the objective function defined in equation (C8) along

the different curves. In particular, the objective function is constant on the dashed line corresponding to ccrit
d . The black circle

corresponds to the point given in equation (C9)while the black cross to the one given in equation (C11). In thisfigurewe have used
d 3= and c c 0.08d

crit
d=  .
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than the critical one, let us denote the smallest of these by cd
+ and then the optimal point is reached at the

intersection of the two lines defined by c d
- and cd

+ in equation (C5), which gives

x c c y c c1 and 1 1 , C11d d d d= + - = - -- + - +( )( ) ( )
so that themeasurement-dependent refinement of equation (28) reads

c c d

c c d c c d

1 2

2 2 1 1 1
. C12A B A B,

d
,

d,low
d d

d d d d 2
h h =

+ - +
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- +

- + - +

( )
( ) ( )( ) ( )

What is particularly interesting about this bound is that whenever c d
- tends to 0 and cd

+ tends to 1, the bound
tends to 1, i.e. these conditions are strong enough to ensure that themeasurements are almost compatible. This
is clearly the case for for identicalmeasurements, that is, for A B= , for which the bound equals 1.

If none of the overlaps is greater than the critical one, the optimal assignment is given by x c d= - and y 0=
and the resulting value corresponds to setting c 1d =+ in the right-hand side of equation (C12).

As an examplewe can compute the lower bound for the embedding of qubitMUBs into higher dimensions
introduced in section 4.3. In this example, c 1 2d =- and c 1d =+ so thatwe get

d
d

1

2
1

2

2
, C13qMUB

d h +
+

⎛
⎝⎜

⎞
⎠⎟( ) ( )

which turns out to be the correct value, see equation (C23) for amatching upper bound.

C.1.2. Upper bound for embeddings in higher dimensions. Here we investigate how the upper bound on dh is
affected by the following procedure, whichwe refer to as embedding. Consider a pair A B,( ˆ ˆ) of rank-one
projectivemeasurements in dimension di and create a new pair A B,( ) in dimension d df i as follows:
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where M N,( ) is a pair of rank-one projectivemeasurements acting on a d df i-( )-dimensional space.

We derive an upper bound on A B,
dh which depends only on the quantityλ (defined in equation (18) of the

main text) computed for themeasurement pair A B,( ˆ ˆ) and the dimensions di and df. As long as 2l < the bound
decreases as df increases and in the limit df  ¥ it converges to 1

2
. This can be explained by observing that as df

increases the noise gets spread out over the entire space and its weight on the subspace relevant for the
measurements A B,( ˆ ˆ) decreases. Note that the bound shows no dependence on the second pair ofmeasurements
M N,( ).

Let us introduce the following ansatz for the dual in equation (23):
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The scalar constraint of the dual in equation (23) reads
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which can be further simplified using the rank-one projective assumption to
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It is easy to see that the constraints

0, , and 2 C18  g a g b a bl+ ( )
ensure that X Y 0a b + .More specifically, thefirst one is required to ensure positivity when both indices are
between d 1i + and df, the second onewhen one of the indices is between 1 and di and the other between d 1i +
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and df, and the last onewhen both indices are between 1 and di. Requiring that the last two inequalities given in
equation (C18) are saturated implies
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. C19a
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Plugging these back into equation (C16) and requiring that the inequality is saturated allows us to deduce that
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To see that this corresponds to a non-negative value ofβnote that 2l implies that

d

d

d d

d

d

d

d
2 1

1
1 1 2 1

1
1

2 1
0. C21

f

i

f f

i

f

i

f

 l- - - - - - - =
-⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) ( ) ( )

We immediately see that 0g , whichmeans that the assignment given above is a feasible point for the dual
given in equation (23). The resulting upper bound reads
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It is immediate thatwhenever d di f= we recover exactly the upper bound given in equation (30).
As an examplewe can compute the upper bound for the embedding of qubitMUBs into higher dimensions

introduced in section 4.3. For this example, d 2i = , d df = , f 2= , and 1 1 2l = + so that we get
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which turns out to be the correct value, see equation (C13) for amatching lower bound.
Note that this procedure can also be applied to sets ofmore than twomeasurements. Althoughwe do not go

into the details in this case, table C1 contains the values obtained by embedding a complete set ofMUBs in higher
dimensions by adding rank-one projectivemeasurements onto the computational basis of the remaining
d df i-( )-dimensional space, e.g. M a aa = ñá∣ ∣ in equation (C14).

C.2. Incompatibility random robustness
C.2.1. Lower bound. For a pair of rank-onemeasurements, it is possible to refine the ansatz defined in
equation (34) by tuning the relative weight of the anticommutator, but this does not lead to any general bound
on rh as thismeasure is notmonotonic under post-processings.

C.2.2. Upper boundwith addition of zero outcomes. Herewe showhow to tighten the upper bound introduced
in section 3.2.4 in the presence of zero POVMelements, whichwe then use in section 4.1.We consider a pair
A B,( ) ofmeasurements that contain zero POVMelements.Without loss of generality we can assume that the
first POVMelements are non-zero. Then, for simplicity, we assume that n n nA B f= = and that the number of
non-zero elements ofA andB is the same andwe denote it by ni. The other cases, namely, n nA B¹ or the number
of non-zero elements ofA andB being different, can be treated in a similarmanner. Thereforewe are left with

TableC1.Values obtained for dh using the embedding procedure described in appendix C.1.2. Specifically, the values correspond to the
embedding of a complete set ofMUBs in dimension di into dimension df. For example, the value 4/10 in the last column comes from the
embedding of 5MUBs fromdimension d 4i = to dimension d 6f = . Althoughwe present numerical values all values are analytical. Note
also that the upper bound obtained via the construction explained in appendix C.1.2 only gives an upper bound on dh . In all cases shown in
this table, this bound is tight as there exists a parent POVMreaching exactly the same value. Such a parent is not given in this paper. As they
provide upper bounds on the lowest value achievable by dh , they can be compared to table 4 in [33].
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two POVMswith the same number nf of outcomes such that
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Thenwe introduce the following ansatz for the dual in equation (32):
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Note that the only difference from equation (37) is that the coefficient of the identity in the dual variable depends
onwhether the outcome corresponds to a zero or non-zero POVMelements. The scalar constraint of the dual in
equation (32) reads
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which can be further simplified by introducing f defined in equation (18) of themain text:
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Assume that 0b > and letλ be the quantity defined in equation (18) of themain text computed for the
measurement pair A B,( ). It is easy to see that the constraints

0, , and 2 , C28  g a g b a bl+ ( )
ensure that X Y 0a b + . Thefirst one is required to ensure positivity when both indices are between n 1i +
and nf, the second onewhen one is between 1 and ni and the other between n 1i + and nf, and the last onewhen
both are between 1 and ni.

Requiring that the last two inequalities given in equation (C28) are saturated implies
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Plugging these back into equation (C27) and requiring that the inequality is saturated allows us to deduce that
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It is easy to check that f 2 1l> -( ) (which is only possible if 2l < ) guarantees that this assignment leads to
strictly positiveβ. Then, this constitutes a feasible point for the dual given in equation (32) andwe obtain
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2

f

i

f

f

i

f

h
l l

l

- - - -

- - - -

( )
( )

( )
( )

( )

It is easy to check that if f 2= , the right-hand side tends to 1

2
as nf  ¥.

C.3. Incompatibility probabilistic robustness
C.3.1. Lower bound. For thismeasure, a natural ideawould be tomix the terms B A A Btr trb a a b+( ) ( ) used for

dh with the terms n n A n n BA B a B A b+ used for rh . Unfortunately, our efforts in this direction did not lead
to any universal lower bound.Nevertheless, this procedure can be used for anyfixed pair ofmeasurements to
obtain improved lower bounds.

C.3.2. Upper bound. In themain text, wemention in section 4.3.2 that the value of dh given by the qubitMUBs
construction is also reachable by ph when the dimension is even.Herewe show this fact by adapting the
procedure explained in sectionC.1.2 to themeasure ph .

Recall that we consider pairs of rank-one projectivemeasurements A B,( )whose difirst outcomes live in the
first di dimensions of the total df-dimensional space, andwhose df−di remaining outcomes live in the
remaining space. For this structure, an ansatz for the dual for dh given in equation (23)has been presented in
equation (C14). However, this ansatz does not satisfy the additional constraints present in the dual for ph given
in equation (40), namely, Xtr a  x and Ytr b  u.
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Assume now that d mdf i= , wherem is a positive integer, and that the structure of the pair of rank-one
projectivemeasurements A B,( ) is the following

A

A
a d

A
m d a md

0

0 0

if 1

0 0

0
if 1 1

C32a
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ˆ

ˆ
( )
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and similarly forBbwith respect to Bb
ˆ , where there arem blocks in thematrices wewrite andwhere Â and B̂ are

rank-one projectivemeasurements acting on a di-dimensional space.We can apply the procedure from
sectionC.1.2 to each di-dimensional subspace of the total df-dimensional space to get a pair of dual variables
X Y,l l( )( ) ( ) for each l m1, 2, ,Î ¼{ }. Then, if we define

X
m

X Y
m

Y
1

and
1

, C33a
l

m

a l d
l

b
l

m

b l d
l

1
1

1
1i iå å= =

=
- -

=
- - ( )( )

( )
( )

( )

it clearly satisfies all constraints of the dual for ph given in equation (40), including the trace constraint by
symmetry. This implies that for the specific block structure of equation (C32), the upper bound obtained in
equation (C22) for dh remains valid for ph .

As an example, consider themeasurement pair defined in equation (84). For this instance, we have d 2i =
and d 4f = . The above procedure gives the same bound as for dh , which is given in equation (C23) by
setting d 4= .

C.4. Incompatibility jointlymeasurable robustness
For thismeasure, we combine the results of sectionC.1.1with the relation between dh and jmh obtained in
equation (B7). Specifically, in the primal in equation (45), the parent POVMGabwill be exactly the onewe used
for dh in equation (27) of themain text, that is, equation (C3)with x and y given in equation (C9), while the
parent POVMHabwill be of the form given in (C1)with x Btrab ba = -˜ , x Atrab ab = -˜ , and y A Btr trab a bg = ,
so that

H
dx d y

A B x A B B A y A B
1

2 1
, tr tr tr tr . C34ab a b a b b a a b2

=
- +

- + +( ) ({ } ( ) ) ( )

Note that such a choice gives rise to a valid parent POVM for the noise considered in equation (B3), namely,
A A d B B dtr , tra a a b b b    - - - -({[ ( ) ] ( )} {[ ( ) ] ( )} ), where

dx

dy x

2
. C35 =

-
-

( )

Thenwe aim atmaximising ò under the constraint that the operatorsHab of equation (C34) are positive. Since
the only difference between equations (C34) and (C3) is the sign of themiddle term, the allowed region
corresponds to the reflection about x 0= of the allowed region given in equation (C7). An analysis very similar
to the one detailed in sectionC.1.1 can be done in order to show that the optimal point is reached for

x
d d

d
y

d d d

d

2 4 4
and

2 4 4

2
, C36

2 2
2

=
+ + -

=
+ + + -⎛

⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

which corresponds to the feasible point presented in equation (50) of themain text. Note that, similarly to the
case of dh , these values of x and y correspond to a critical overlap:

c
d d d

d d

2 4 4

2

1
. C37crit

jm
2

=
- + + + - ( )

Note that this coincides with theMUBoverlap only in dimension d 2= .
To obtain ameasurement-dependent refinement of the universal bound given in equation (50), we follow

the approach described in sectionC.1.1, i.e. wemaximise ò over a larger region determined by the values of cab
present in the specificmeasurement pair we consider. In an analogousmannerwe introduce c jm

- and c jm
+ , where

the former is taken to be 0 if no overlap is smaller that the critical one. Finally we obtain the following
measurement-dependent bound:
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d

c c d

c c d c c d

1 1 2

1 1
, C38A B A B

A B
,
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,

d,low ,
d,low jm jm

jm jm jm jm
h h

h
+

- + + -
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- + - +

· ( )
( )( ) ( )

where A B,
d,lowh was defined in equation (C12). Note that the optimisations of the two parent POVMs appearing in

the primal given in equation (45)were performed separately. A better bound could in principle be obtained by
optimising over both POVMs at the same time, butwe leave this task open for futurework.

C.5. Incompatibility generalised robustness
For a pair A B,( ) of rank-onemeasurements, an ansatz of the form (C1) that is easy to analyse is defined by

x yc Btrab ab b
2a = +˜ ( ) , x yc Atrab ab a

2b = +˜ ( ) , and 0abg = , where

c
A B

A B

tr

tr tr
C39ab

a b

a b

=
( ) ( )

if A Btr tr 0a b > and c 0ab = otherwise. Then

G
dx y

A B x yc A B B A
1

2 1
, tr tr . C40ab a b ab a b b a

2=
+ +

+ + +( ) ({ } ( )( ) ( )

If A Btr tr 0a b = we immediately see that G 0ab = , sowe only need to check positivity in the case A Btr tr 0a b > .
Under the assumption that x y, 0 wededuce from equation (C2) that in order to have G 0ab  , we should
have

x yc c x yc c1 0. C41
ab ab ab ab
2 2 2 + +  + +( ) ( )

As shown in section 3.5.3 of themain text the corresponding visibility reads

dx y

dx y

2 1

2 1
. C42d

1

h =
+ + +

+ +

( )( )
( ) ( )

The goal is tomaximise this η in the positivity region of allGab. Then a similar analysis to that of dh leads to the
maximum d1 1 2h = +( ) achieved by the point x d1 2= ( ) and y d 2= presented in
equation (58).

As before to obtain ameasurement-dependent refinement we define the critical overlap c d1crit
g = (note

that this coincides with theMUBoverlap in every dimension). If one of the overlaps equals ccrit
g no improvement

can be obtained, so fromnowwe assume all the overlaps to be different from ccrit
g . Let c g

- be the biggest overlap
smaller than ccrit

g and cg
+ the smallest bigger than ccrit

g . The optimal point corresponds to

x
c c

c c
y

c c
and

1
C43

g g

g g g g
=

+
=

+
- +

+ - + -
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and gives the followingmeasurement-dependent refinement:

c c d c c d d

d c c c c d

2 1 1

2 1
. C44A B,

g
g g g g

g g g gh
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+ + +
- + - +

- + - +

( ) ( )( )
( ) ( )

Contrary to themeasurement-dependent bounds on dh and jmh , namely, equations (C12) and (C38), whenever
c g
- tends to 0 and cg

+ tends to 1, this bound tends to d d3 1 4 1+ ¹( ) ( ) . This is due to the fact that the ansatz
given in equation (C40) does not contain the identity term, as including such a termmakes the optimisation
procedure difficult. Therefore in some cases a bettermeasurement-dependent lower bound on gh is obtained by
plugging equation (C12) into (B9), which gives

c c c c d

c c d c c d

1

2 2 1 1 1
. C45A B,

g
d d d d

d d d d 2
h

+ + +

+ + - + - -
- + - +

- + - +( ) ( )( ) ( )

AppendixD.Details of the path used infigure 5

Infigure 5 of themain text, we plot the value of the studied incompatibilitymeasures on a continuous path.
Recall that wefix thefirstmeasurement to correspond to the computational basis, so the path is determined by
the secondmeasurement and it leads fromBdev throughBqMUB toBMUB. In this sectionwe provide an explicit
description of this path.
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The trajectory fromBdev toBqMUB corresponds to the interval 4, 2q p pÎ [ ] for

B U b b U U, where

1
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It is easy to check that 4q p= corresponds toBdev defined in equation (79), while 2q p= corresponds to
BqMUB defined in equation (78).

For the second part of the path, let us first explicitly state our choice of the basisB unbiased toA in dimension

d 3= :

B U b b U U, where
1

3

1 1 1

1 e e

1 e e

. D2b
MUB 4i
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Wenow choose a particular unitaryV thatmapsBqMUB toBMUB:

V

2

3

3 3i

6 2

3 3i

6 2

0
3 i

2 2

3 i

2 2
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( )

To generate a continuous pathwe compute the principalmatrix logarithmofV, i.e. we find aHermitianmatrix
H that satisfiesV e Hi= andwhose spectrum is contained in ,p p-( ]. The path is given by Be etH tHi qMUB i- for
t 0, 1Î [ ], which clearly givesBqMUB for t=0 andBMUB for t=1.

Appendix E. Larger sets ofmeasurements

In this appendix, we generalise somenotions and techniques introduced in themain text to larger sets of
measurements. The notation of pairs used through themain text, namely,Aa andBb, was useful for clarity.
However, formoremeasurements we opt for another notation taken fromnonlocality: Aa x∣ , where x k1= ¼
labels themeasurement performed and a n1 x= ¼ is its outcome. In the following, wewill refer to the set of
measurements Aa x a x{{ } }∣ simply as Aa x{ }∣ , dropping the indices, andwewill use a x,å as a shorthand for

x
k

a
n

1 1
xå å= = . Similarly to definition 1 in themain text, we say that a set of POVMs Aa x{ }∣ is compatible if there

exists a parent POVM G j
, where j j j jk1 2= ¼


and j n1, ,x xÎ ¼{ }, such that G Aj j a j a x,x

då =  ∣ , that is, we
obtain the original POVMelements asmarginals of the parent POVM.

Similarly to section 2.2, we can define noisemodels through themaps N POVM POVM: d
n n

d
n n, , , ,k k1 1¼ ¼( )

such that AN N POVM: a x A d
n n, ,

a x
k1Í ¼{ }∣ { }∣ . Given a noisemodel such that each noise set contains at least

one jointlymeasurable set ofmeasurements, we can define the corresponding incompatibility robustness
measure, similarly to definition 3,

A N JMsup 1 .A

N

a x a x

N
0,1a x

a x Aa x

h h h h= + - Î
h

*

Î
Î

{ ∣ · { } ( ) · { } }{ } [ ]
{ }

∣ ∣∣

∣ { ∣ }

For thesemeasures, the properties discussed in sections 2.2and 2.3 can also be naturally generalised to larger
sets ofmeasurements, together with the corresponding properties of the noisemodels N. Then it is
straightforward to see that the generalmeasures satisfy the same properties as the ones discussed for pairs in
section 3. These general versions can also be formulated as SDPs, and in the remainder of this appendixwe
present these SDP formulations and provide lower and upper bounds on themeasures.
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E.1. SDP
Herewewrite the formulations of all themeasures introduced in themain text as SDPs.
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E.2. Lower bounds
Herewe derive lower bounds on some of the abovemeasures in this general setting.

For dh , the following bound is presented in [16], equation (11)

k

k

d

1
1

1

1
, E1A

d
a x

h +
-
+

⎛
⎝⎜

⎞
⎠⎟ ( ){ }∣

and from (68) this same bound holds for jmh and gh aswell. and from (68) this same bound holds for jmh and gh
aswell. Here we outline a fewways to improve on this bound.

One option is to apply the universal lower bounds for pairs, derived in themain text, successively on subsets
of pairs ofmeasurements. Starting from kmeasurements, we group them into k 2 or k 1 2+( ) pairs,
depending on the parity of k, andwe compute the parent POVMs for these pairs defined in equations (28), (50),
and (59), corresponding to the universal lower bound. Thereforewe end upwith k 2 or k 1 2+( )
measurements, which are the parent POVMs.We repeat this process until we end upwith only one pair of
measurements. Sincewe use universal lower bounds, the specific pairings do notmatter, andwe obtain a bound
that depends only on k and d.When k 2n= for instance, we get that the lower bounds on dh and gh are the nth
power of the corresponding lower bound for pairs, namely, equations (28) and (59), respectively. Note that
whenever k is odd, an asymmetry is introduced by the choice of whichmeasurement is not pairedwith another
one, butwe can overcome this problemby symmetrisation.

Let us illustrate this procedure on a triplet ofmeasurements denoted by A B C, ,( ). For any pair A B,( ) of
POVMs, we denote by G A B,( ) their parent POVMused to derive universal lower bounds in section 3, for
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instance, equation (28) for dh . Then the following POVM is a parent POVM for noisy versions ofA,B, andC,
with respect to the noise of dh in this case:

G G A B C G G C A B G G B C A
1

3
, , , , , , . E2+ +[ ( ( ) ) ( ( ) ) ( ( ) )] ( )

For dh and any number ofmeasurements k 3 and any dimension d 2 , this procedure never improves
on equation (E1), except for triplets of qubitmeasurements for which it gives the bound 1 1 2 3+( ) . Note
thatwe outperform this bound by completely solving this case of threemeasurements in dimension two in
section E.4.

For jmh , the above procedure ismademore complex by the fact that two parent POVMs are necessary. An
alternative bound can be obtained by plugging equation (E1) into (B7). Note that this requires the equivalent of ò
in equation (B3) formoremeasurements, namely, a dimension-dependent number such that the set

A A dtr a x a x  - -{( ( ) ) ( )}∣ ∣ is jointlymeasurable. Both procedures are possible and involve suitable
combinations of the parent POVMs introduced in this work.However, due to their complexity, we do not
present the resulting bounds.

For gh , we should compare the above procedure and the bound obtained by plugging equation (E1) into
(B9). For instance, for k 3= and d 4= , the former gives 5/8 and the latter 3/5.

E.3. Upper bounds
The various upper bounds presented throughout themain text naturally generalise tomoremeasurements.We
introduce the generalised quantities corresponding to equation (18)
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and also those corresponding to equation (19)
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Using these definitions, the feasible points for the duals in section E.1 are
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Note that we have implicitly assumed that f g*¹ for all themeasures. From the discussion below it turns out
that the equality holds only when allmeasurement elements are proportional to the identity operator, in which
case the set is trivially compatible. These feasible points give rise to the following bounds:
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Note that, from the inequalities in equation (E9) below and under the assumption f l> , we have

max , . E7A A A A A
d,up r,up p,up jm,up g,up

a x a x a x a x a x
  h h h h h{ } ( ){ } { } { } { } { }∣ ∣ ∣ ∣ ∣

E.3.1. Discussion of the feasible points. Herewe first show that for all sets ofmeasurements, the inequalities

f g f gand E8d r  ( )
hold, with equality if and only if all POVMelements involved are proportional to the identity. Thenwe also
derive the hierarchy used to derive equation (E7), namely,
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g g g gmin , 0. E9d r p jm  { } ( )
These two inequalities imply that unless all POVMelements are proportional to the identity we have f g*> and
the bounds given in equation (E6) hold (which are generalisations to larger sets ofmeasurements of the upper
bounds given in equations (30), (38), (43), (52), and (66) of themain text).

In order to prove the inequalities in equation (E8), we use theCauchy–Schwarz inequality:

A A A d Atr tr tr tr tr . E10a x a x a x a x
2 2 2 2 2 = =( ) [ ( · )] ( ) ( ) ( ) ( )∣ ∣ ∣ ∣

For g d, this implies that
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For g r, we also use the concavity of the square-root, which implies that
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wherewe have used equation (E10) to get the second inequality. This gives

f
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d d
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Note that to have equality in the inequality in equation (E10), the eigenvalues ofAa should all be equal, that is,
Aa µ . This shows that in order to have equality in the inequalities of equation (E8), allmeasurement operators
need to be proportional to the identity.

Regarding equation (E9), the inequality g gd p comes from
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The inequality g gr p comes from
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The inequality g gp jm comes from M d Mtr min Sp( ) ( ) for every d d´ HermitianmatrixM, so that
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Lastly, the inequality g 0jm  comes from the positivity of the POVMelements involved in its definition, which
concludes the proof of equation (E9).

E.3.2. Alternative upper bounds. Herewe provide alternative feasible points for the duals in Section(E.1) that
give rise to upper bounds that are in some cases tighter than the ones discussed above. Let us consider sets of
POVMs Aa x{ }∣ such that no POVMelement is zero.We can define newquantities very similar to the ones of
equations (E3) and (E4), namely,

f
A

d A

A

A

g g g
k

d
g

A

A

tr

tr
, max max Sp

tr
,

, and min min Sp
tr

.

E17
a x

a x

a x j a x
j a

a x

a x

j a x
j a

a x

a x

tr
,

2

tr
,

,

tr
d

tr
r

tr
p

tr
jm

,
,

x

x

å å

å

l d

d

= =

= = = =





⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

( )
∣
∣

∣
∣

∣
∣

Using thesewe can derive bounds similar to those in equation (E6):
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Similarly to as in section E.3.1, the inequalities f g g g g 0
tr
d

tr
r

tr
p

tr
jm  = = hold and give natural relations

between the bounds.
For the qubitmeasurementsmentioned in section 4.2, namely, any rank-one POVMpair such that

A a aa = ñá∣ ∣and the Bloch vectors ofB lie on the xy-plane of the Bloch sphere, the parameters in equation (E17)
are f 2tr = as such a pair is rank-one, 1 1 2trl = + , and g 1 1 2

tr
jm = - due to the orthogonality of the

Bloch vectors of the POVMelements ofA andB. Therefore the upper bounds in equations (E18)–(E20) coincide
with theMUBvalues given in equation (69).

For rank-one projective pairs ofmeasurements the bounds in equations (E18)–(E20) coincide with their
counterparts in equation (E6), but in general they are incomparable, that is, for differentmeasurement pairs one
or the othermight give the lower value. For the pair A B,L L( ) used inCounterexample 1, the bound on dh in
equation (E18) gives 3 13 1 10 1.3817+ »( )/ , whereas the one in equation (E6) gives
9 2 1 14 0.8377- »( )/ . On the other hand, for the pair A B,b( ) used inCounterexample 3, the bound on dh
in equation (E18) gives 1 2 0.7071»/ , whereas the one in equation (E6) gives 4 2 1 7 0.9510+ »( )/ . This
incomparability suggests that theremay exist amore general way to construct such upper bounds, e.g. involving
polynomials in Aa x∣ in the definition of Xa x∣ .We leave this question open for further work.

E.3.3. Tightness of the upper bound on gh forMUBs. We investigate the tightness of the upper bound on gh in
equation (E6) for variousMUB constructions. The relation(B9) between dh and gh is obviously also valid for
more than twomeasurements. Therefore, the cases inwhich the bounds on dh in [36] are tight, that is,

k d k k ddh l= - -( ) ( ), give rise to tight upper bounds on gh as well. This is because in this case
equation (B9) reads k gl h , which saturates the upper bound for gh in equation (E6). In particular, for the
standard construction ofMUBs in prime power dimensions [20] the bound on gh in equation (E6) is tight when
k d= and k d 1= + .

Themethods developed in [36] can also be applied to show the tightness of the upper bound on gh in
equation (E6) in some additional cases. Specifically, applying the ansatz [36], equation (11) to the incompatibility
generalised robustness primal leads to optimal constructions in some cases. In particular, when the dimension is
d 2r= , all subsets of size k d2, 3, , 1Î ¼ +{ }of the standard construction of complete sets ofMUBs saturate
the upper bound on gh in equation (E6).

To show this, we use the notation of [36], appendixD. In this work the authors show that for the standard
MUB construction themarginals along jx of the operator G j

 defined in [36], equation (11) are diagonal in the
basis a

x
aj ñ{∣ } . Thus, the corresponding value of η in the incompatibility generalised robustness primal is
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Moreover, by definition [36], equation (11)wehave
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Therefore, if all Ga
x

j j a j a
x

,x
j d já å ñ ∣ ∣ are equal, regardless of a and x, we can replace theminimum in

equation (E21) by the total sumdivided by the number of terms:
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, E23
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and kl is a lower bound for g

a
x

a
xh j jñá{∣ ∣} . As it coincides with the upper bound for gh in equation (E6) (recall that

f=k for rank-onemeasurements), the tightness of this upper bound follows.
When d 2r= , one can see from [36], appendix D 3 that Ga

x
j j a j a

x
,x

j d já å ñ ∣ ∣ is indeed independent of a and x.

This shows that if d 2r= , then for the standard construction ofMUBs, we have kgh l= for all sets of
k d2, 3, , 1Î ¼ +{ }projectivemeasurements onto kMUBs.

Another interesting example is given by triplets ofMUBs in dimension d 4= . From [54], we know that all
possible triplets can be parametrised by three (real) parameters. For dh , depending on the choice of these
parameters, we get a different robustness, whereas for gh , they all give the same value, namely, 2/3.

Note however that the bound on gh in equation (E6) is not always tight forMUBs. For k 4= MUBs in
dimension d 5= , we get 0.5692 0.5693 3gh l» < » / .
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E.3.4. Upper bound on jmh forMUBs. Belowwe show that for the standard construction ofMUBs in odd prime
power dimensions [55], the bounds on jmh and gh in equation (E6) coincide. In order to show this, we need to
prove that in this case g 0jm = for all k d2, 3, , 1Î ¼ +{ }.When k d< , this is clear. For k d= and
k d 1= + , thisminimumeigenvalue is reached, for instance, whenwe pick thefirst POVMelement of each
measurement.Wefirst use the notations of [36], appendix D 2 to prove the general case and then give a
simplified proof in the case of prime dimensions.

Here we give the proof when k d pr= = , with p prime and x dÎ , theGaloisfieldwith d elements, which
singles out a particular choice of dMUBs that does not include the computational basis. The other cases, namely,
k d 1= + and k d= with one of the bases being the computational basis, can be treated similarly. Recall that
gjm concerns the spectra of the operators Aa x j a a x, ,x

då ∣ for every j

, see equation (E4). If we choose j 0=

 
, we get

d
l l l l

1
e , E24
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p∣ ∣ ∣ ∣ ∣ ∣ ( )[ ( )]

where the trace over theGaloisfield d is defined by a a a aTr p2 1= + + + - so that it belongs to
p0, 1, , 1¼ -{ }. Note that the convention used here to label the POVMelements is different than the one in the

main text, as it starts from0 instead of 1. For the operator in equation (E24), the vector l lñ - - ñ(∣ ∣ ) is an
eigenvector with eigenvalue 0 for l 0dÎ ⧹{ }, which concludes the proof.

As an easier illustration, we consider the case when d is an odd prime. In this case, a complete set ofMUBs is
given by the computational basis l l

d
0
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-{∣ } and
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where x labels the bases and a the vectors. equation (E24) then takes the form
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for which l lñ - - ñ∣ ∣ is an eigenvector with eigenvalue 0 for l d1, 2, , 1Î ¼ -{ }.

E.4.Most incompatible triplets of qubitmeasurements
Belowwe analyse the incompatibility robustness of a triplet of qubitMUBs, and show that they are among the
most incompatible triplets in dimension 2 under dh , ph , jmh , and gh . For a triplet of projectivemeasurements
onto three qubitMUBs A B C, ,MUB MUB MUB( ), the quantities defined in equations (E3) and (E4) are f 3= ,

3 3 2l = +( ) , g g 3 2d p= = , and g 3 3 2jm = -( ) , so that the bounds of equation (E6) read

1

3
, 3 1, and

1

2
1

1

3
, E273MUB

d
3MUB
p
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jm

3MUB
g   h h h h- +

⎛
⎝⎜

⎞
⎠⎟ ( )

wherewewrite 3MUB
*h to denote the incompatibility robustness of A B C, ,MUB MUB MUB( ).

Nowwe derive universal lower bounds for the abovemeasures for triplets of qubitmeasurements, and show
that a triplet ofMUBs saturates these.We start with dh , which is post-processingmonotonic, and therefore it is
enough to derive bounds on it for rank-one triplets A B C, ,( ), for whichwe introduce

G A B C A C B B C A B A C C A B C B A

B C A A C B A B C A B C

1

2 9 3

3 3 4

2

tr tr tr tr tr tr
9 5 3
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E28

abc a b c a c b b c a b a c c a b c b a

b c a a c b a b c a b c 

=
-

+ + + + + +
-

´ + + +
-

⎧⎨⎩
⎫⎬⎭

( ) [ ]

[ ( ) ( ) ( ) ( ) ( ) ( ) ] ( ) ( ) ( )
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We show that this is a valid feasible point for the primal for dh in section E.1 together with 1 3h = . The
correctness of themarginals is immediate. The positivity follows from a tedious but straightforward
computation inwhichwe express the eigenvalues ofGabc as functions of the overlaps betweenAa andBb,Bb and
Cc, andCc andAa (which is possible, because we are dealingwith 2×2matrices). This shows that

1

3
, E29A B C, ,

d h ( )

which also holds for non-rank-one triplets by post-processingmonotonicity of thismeasure.
Regarding the othermeasures, the above inequality immediately holds for ph due to the obvious

generalisation of equation (68) to triplets ofmeasurements.
For jmh , themethod described in equation (B2) can be used for triplets as well to get

1 2A B C A B C A B C, ,
d

, ,
d

, ,
g h h h+ -( ) , where 3 1 = - because
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and similarly forBb andCc. The validity of ò is then guaranteed by applying the bound obtained just above on dh
to themeasurements A A B B C Ctr , tr , tra a a b b b c c c  - - -({ ( ) } { ( ) } { ( ) } ).

For gh , themethod described in equation (B9) can be used for triplets as well to get 1A B C A B C, ,
d

, ,
dh h+ -( )

2 A B C, ,
g h .

Therefore, we have proven that
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, 3 1 , and
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d
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As a triplet of projectivemeasurements onto three qubitMUBs reaches these lower bounds from equation (E27),
they are among themost incompatible triplets of qubitmeasurements with respect to dh , ph , jmh , and gh .
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