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1 Bell nonlocality

1.1 Preliminaries and notation

Throughout these notes all the Hilbert spaces, which we denote by H, are assumed
to be finite-dimensional unless specified otherwise. A pure quantum state is a vector
|ψ〉 ∈ H satisfying 〈ψ |ψ〉 = 1. A mixed quantum state ρ is a linear, Hermitian and
positive semidefinite operator acting on H which satisfies Trρ = 1. A measurement
with n outcomes is described by a set of n linear operators {F j}

n
j=1 acting on H, which

are Hermitian, positive semidefinite and satisfy the normalisation condition

n∑
j=1

F j = 1. (1.1)

A bipartite pure state on two Hilbert spaces HA and HB is a vector |ψ〉AB ∈ HA ⊗HB. A
bipartite mixed state ρAB is a linear operator acting on HA⊗HB satisfying the conditions
listed above.

1.2 Historical introduction

In the first part of the class we have focused on entanglement, which is an inherently
quantum property. Therefore, one cannot use it to compare quantum mechanics against
other, alternative physical theories. In this part we will talk about correlations between
space-like separated devices. This field is usually referred to as Bell nonlocality after
John S. Bell who was the first to give a formal description of this setup. However, these
ideas can be traced back to the Einstein–Podolsky–Rosen (EPR) paradox first discussed
in their famous 1935 paper.

The original EPR paradox considers the position and momentum of a quantum particle,
but for our purposes we follow the variant proposed by Bohm which uses a two-level
system, e.g. a spin-1/2 particle. Consider two spins in a maximally entangled state:

|Φ+〉AB :=
1
√

2

(
|0〉A|0〉B + |1〉A|1〉B

)
. (1.2)
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1 Bell nonlocality

The A spin is controlled by Alice, while the B spin is controlled by Bob and suppose that
Alice and Bob are really far away. Now suppose that Alice performs a measurement
in the standard basis {|0〉, |1〉}. If she obtains outcome “0”, the state of Bob is given
by |0〉, while if she obtains “1” his state is given by |1〉. Therefore, if Bob performs a
measurement in the standard basis Alice can perfectly predict his outcomes. However,
if he performs a measurement in the Hadamard basis {|+〉, |−〉}, Alice cannot predict
his outcome. Clearly, the situation is reversed if Alice performs a measurement in the
Hadamard basis instead.

The authors postulate that if a certain quantity can be predicted with certainty, there
should exist an element of reality associated with it. Moreover, these elements of
reality should be local, i.e. they should not be influenced by actions performed far
away. While it is not exactly clear what these elements of reality should be, they are
intended to capture some notion of objectivity, something that is independent of the
observer or the state of anyone’s knowledge. This postulate applied to the observations
above implies that the spin of Bob should contain a separate element of reality for each
possible measurement. However, this is not possible in the quantum formalism, which
leads the authors to conclude that the quantum description should not be considered
complete.

The postulate stated above, which according to Einstein, Podolsky and Rosen every
“decent” physical theory should satisfy, is now known as the assumption of local
realism. The reality part requires that objects have properties which can be assigned
objective values regardless of whether a measurement is performed or not. In other
words, performing a measurement simply reveals a pre-existing value. The locality part
requires that these properties should be localised and should not be instantaneously
affected by events happening somewhere else.

The final conclusion of the EPR paper is that the quantum-mechanical description
should not be considered complete. Nowadays we interpret it differently: we sim-
ply admit that some of the predictions of quantum mechanics do not agree with our
everyday intuition, i.e. that it is qualitatively different than all the pre-quantum physics.

This statement was formalised and proved in the seminal paper of John S. Bell published
in 1964. He considered the scenario of two isolated parties, he formalised the notion of
local realism and he showed that quantum mechanics indeed does not admit a local-
realistic description. The study of such scenarios is now referred to as Bell nonlocality
and constitutes the main topic of this course.

1.3 Local, quantum and no-signalling sets of correlations

In the simplest Bell scenario we consider a pair of devices controlled by two parties,
which we will refer to as Alice and Bob. These devices could have interacted in the
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1 Bell nonlocality

past, so they can be correlated, but they are not allowed to communicate during the Bell
experiment (we will later formalise what we mean by this). Each device has a number
of buttons which correspond to different measurements it can perform. Once a button
is pressed the device produces an outcome. Note that the interaction with the devices is
purely classical: we press a classical button and receive a classical outcome. What might
not be classical is what happens inside the device, but we can only probe it through
classical interaction.

The breakthrough discovery of Bell is that in such a simple setup we can conclusively
distinguish between classical and quantum devices. More generally, we can think that
the Bell setup allows us to make a fair comparison between different physical theories.

Suppose that Alice and Bob can choose one out of k measurements and let us denote the
measurement settings of Alice and Bob by x and y, respectively. Each measurement
produces outcomes from the set [n] := {1, 2, . . . ,n} and let us denote the outcomes of
Alice and Bob by a and b, respectively. Suppose, moreover, that they can repeat the
experiment multiple times and that they are guaranteed that the devices will always
behave in the same manner. This means that for every pair of measurement settings
(x, y) we have a well-defined probability distribution over pairs of outcomes (a, b).
Moreover, given enough statistics Alice and Bob can estimate it to arbitrary precision.
We will denote this probability distribution by P(ab|xy).1 For a fixed pair of settings
(x, y) we have a probability over n2 outcomes which can be interpreted as a real vector
with n2 components. Since there are k2 pairs of settings we can think of the entire
statistics as a real vector of dimension n2k2. For convenience we will sometimes write
P ≡ {P(ab|xy)}abxy ∈ R

n2k2
and call it a probability point.

Let us start with the case of classical devices. Consider a class of strategies which consists
of a probability distribution q(λ) over some finite2 set L and two response functions:

rA(a|x, λ) : [n] × [k] × L→ R+,

rB(b|y, λ) : [n] × [k] × L→ R+

satisfying
n∑

a=1

rA(a|x, λ) =

n∑
b=1

rB(b|y, λ) = 1

for all x, y, λ. Note that for fixed x and λ the response function rA(a|x, λ) is simply a
probability distribution over [n] and so is rB(b|y, λ) for fixed y and λ. Suppose that the
classical devices function in the following manner: (a) before the Bell experiment the
devices draw from the probability distribution λ and store the value, (b) during the
experiment the outcomes are generated locally by the response functions based on the

1While this object is sometimes referred to as the “conditional probability distribution” one should not
think of it as a conditional probability in the sense of probability theory since a priori there is no need
to specify a probability distribution over inputs (x, y).

2Later we will see that allowing L to be infinite results in the same correlation set.
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1 Bell nonlocality

random variable λ and the local measurement setting only. The resulting statistics are
given by:

P(ab|xy) =
∑
λ∈L

q(λ) rA(a|x, λ) rB(b|y, λ). (1.3)

If a probability point admits a description of the form given in Eq. (1.3) we say that it
belongs to the set of local-realistic correlations, or the local set for short, denoted by
L. The variable λ is sometimes referred to as a local hidden variable (LHV) and the
resulting decomposition as an LHV model.

Note that if we skipped the sum over λ in Eq. (1.3) we would obtain probability distri-
butions that factorise between Alice and Bob:

P(ab|xy) = rA(a|x) rB(b|y). (1.4)

In such distributions there are no correlations between Alice and Bob. Allowing for a
sum over λ corresponds to taking convex combinations of such product distributions.
Note that this is in exact analogy to the separable states which are defined as convex
combinations of product states.

It should be clear that the definition above encompasses everything that classical devices
are capable of. The notion of local realism discussed before, however, is phrased in
a slightly different manner: it requires that all properties should simultaneously have
well-defined values. In other words, we should be able to write down a joint probability
distribution that contains the statistics of all possible measurements. Fortunately, it is
not hard to prove that the two statements are equivalent, which is sometimes referred
to as Fine’s theorem. If our statistics can be written in the form given in Eq. (1.3), then
a joint probability distribution is given by

P(a1a2 . . . akb1b2 . . . bk) =
∑
λ∈L

q(λ)
k∏

j=1

[
rA(a j| j, λ) rB(b j| j, λ)

]
. (1.5)

To see that given a joint probability distribution one can construct an LHV model note
that we can simply take the hidden variable λ to contain all the variables, i.e. λ =
(a1a2 . . . akb1b2 . . . bk). Then, the response functions simply pick out the right component
of λ.

Having discussed the classical case let us move on to quantum devices. In the most
general case these two devices will share a quantum state which we denote by ρAB. The
measurement setting x on Alice’s side corresponds to measurement operators {Px

a}
n
a=1.

The measurement setting y on Bob’s side corresponds to measurement operators {Qy
b }

n
b=1.

Then, the Born rule tells us that

P(ab|xy) = Tr(Px
a ⊗Qy

bρAB). (1.6)
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1 Bell nonlocality

The triple
{
ρAB, {Px

a}, {Q
y
b }
}

is often referred to as the quantum realisation. LetQfin be the
set of correlations attainable by finite-dimensional realisations, i.e. a probability point P
belongs toQfin if there exists a finite-dimensional quantum state and local measurements
such that Eq. (1.6) holds. We then define the quantum set Q as the closure of Qfin, i.e. Q
contains all the probability points which can be approximated arbitrarily well by finite-
dimensional quantum realisations. Note that the quantum set is defined for a particular
Bell scenario identified by the number of settings and outcomes but this is completely
independent of the dimension of the quantum realisation.

It should not come as a surprise that quantum devices are at least as powerful as classical
devices. To show this let us give an explicit construction that turns an LHV description
of the form given in Eq. (1.3) into a particular quantum realisation. Let d := |L| and let
{|eλ〉}λ∈L be an orthonormal basis on Cd. Consider a quantum realisation acting Cd

⊗Cd

specified by:

ρAB :=
∑
λ∈L

q(λ) |eλ〉〈eλ | ⊗ |eλ〉〈eλ |, (1.7)

Px
a :=

∑
λ∈L

rA(a|x, λ) |eλ〉〈eλ |, (1.8)

Qy
b :=

∑
λ∈L

rB(b|y, λ) |eλ〉〈eλ |. (1.9)

It is easy to check that this indeed a valid quantum realisation and that it reproduces
the statistics of the original LHV model. Hence, it immediately implies that L ⊆ Q.

In the description above we have allowed Alice and Bob to share a mixed quantum
state and perform arbitrary measurements. However, it is clear that every mixed state
can be purified, the purifying system can be given to one of the parties who can then
ignore it in the measurement process. Therefore, the same statistics can be observed by
measuring a pure state (although of a potentially larger dimension). More specifically,
if |Ψ〉ABB′ is a purification of ρAB, then we would say that both subsystems B and B′ are
in Bob’s possession and that his new measurements are given by Qy

b ⊗ 1. Similarly, one
can use Naimark’s dilation to argue that we can without loss of generality assume that
the measurements of Alice and Bob are projective. These two simplifications are often
useful as they reduce the set of quantum realisations that we must consider.

An important feature of both the local and the quantum set is that they obey the no-
signalling conditions:∑

b

P(ab|xy) =
∑

b

P(ab|xy′) for all a ∈ [n] and y, y′ ∈ [k],∑
a

P(ab|xy) =
∑

a
P(ab|x′y) for all b ∈ [n] and x, x′ ∈ [k].

(1.10)

These conditions imply that the local distribution of outcomes on Alice’s side does not
depend on the setting chosen by Bob and vice versa. Clearly, this is necessary if we want
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1 Bell nonlocality

to claim that Alice and Bob cannot communicate. It also implies that it is meaningful to
talk about the local distribution of outcomes defined as

P(a|x) :=
∑

b

P(ab|xy), (1.11)

P(b|y) :=
∑

a
P(ab|xy). (1.12)

The fact that the two devices cannot signal to each other is one of the main assumptions
of the Bell scenario. Hence, one could argue that any theory that we want to analyse in
this framework must satisfy no-signalling. A logical next step is to ask: what about a
theory in which no-signalling is the only restriction we impose on the probabilities? This
surprisingly simple idea leads to the no-signalling set of correlations, which we denote
by NS. A probability point belongs to the no-signalling set if P(ab|xy) corresponds to
valid probability distributions, i.e.

P(ab|xy) ≥ 0, (1.13)∑
ab

P(ab|xy) = 1 for all x, y, (1.14)

and moreover it satisfies the no-signalling conditions given in Eq. (1.10).

So far we have defined three correlation sets: the local set, the quantum set and the
no-signalling set. We have shown that the following inclusions hold:

L ⊆ Q ⊆ NS, (1.15)

and we will see that both of them are strict. The local and quantum sets capture what can
be achieved when we restrict ourselves to classical and quantum systems, respectively.
The no-signalling set can be seen as the largest set which is still consistent with the spirit
of a Bell experiment. Alternatively, it can be seen as an outer approximation of the local
or quantum set which admits a simple form.

Before moving on to a more detailed analysis let us make a brief comment on the foun-
dational inconsistency between the concept of local realism and quantum mechanics.
Recall that in a local-realistic theory we can interpret the measurement as simply re-
vealing some pre-existing value. This should be contrasted with quantum mechanics
in which the measurement outcome only comes into existence as a consequence of the
measurement. Since in a local-realistic theory the measurement is a passive process,
we can in principle perform an arbitrary number of measurements one after another
(note that the order does not influence the observed statistics), which allows us to define
a joint probability distribution as required by Fine’s theorem. In quantum mechanics
performing a measurement affects the state of the system, so afterwards we no longer
have the original state. While we might be able to perform some measurement on the
resulting state, it is not the same as performing it on the original state. This leads to the
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1 Bell nonlocality

concept of incompatible measurements, i.e. measurements which cannot be performed
simultaneously (on a single copy of the system) with the typical example being position
and momentum of a quantum particle. It should not come as a surprise that one must
use incompatible measurements to generate nonlocal correlations.

1.4 Basic properties of the three correlation sets

To continue our discussion of the correlation sets we need to introduce some basic
concepts from convex geometry. Let S be a subset of Rn. We say that S is convex if

x, y ∈ S =⇒ px + (1 − p)y ∈ S (1.16)

for any p ∈ [0, 1]. In other words, we require the set to be closed under convex combi-
nations.

Given an arbitrary set Swe can make it convex by explicitly adding all possible convex
combinations of points in S. Such a procedure is known as taking the convex hull (or
convex envelope) of S and we can think of it as finding the smallest convex set that
contains S.

We say that z ∈ S is an extremal point of S if the existence of x, y ∈ S such that
px + (1 − p)y = z for some p ∈ (0, 1) implies that x = y = z. In other words, extremal
points are those that do not admit a non-trivial convex decomposition.

Example. Consider the following convex subsets of R2:

S := {(x, y) ∈ R2 : |x| + |y| ≤ 1}, (1.17)

T := {(x, y) ∈ R2 : x2 + y2
≤ 1}. (1.18)

List the extremal points of S and T . Note that these sets are simply unit balls in R2

according to the vector p-norm for p = 1 and p = 2, respectively.

What is important is that for convex sets which are compact3 the knowledge of extremal
points uniquely determines the set.

Krein–Millman’s theorem. Every compact convex subset of a finite-dimensional vector
space is equal to the convex hull of its extremal points.

An alternative statement of this theorem reads: every point of a compact convex set can
be written as a convex combination of its extremal points.

Krein–Millman’s theorem essentially tells us that knowing the extremal points allows us
to reconstruct the entire set. In other words, if our goal is to understand some compact

3Recall that a subset of Rn is compact if and only if it is closed and bounded.
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1 Bell nonlocality

convex set, we may restrict our attention to its extremal points. To see that compactness
is crucial here note that convex sets which are not compact are not even guaranteed to
have any extremal points, e.g. consider S = R or S = (0, 1) ⊆ R.

For our discussion it is convenient to interpret the correlation sets as subsets of Rn2k2

since this enables us to use a number of standard tools. In the rest of this section we
show that all three correlation sets are convex and compact and let us start with the
former.

Consider two local-realistic points P0 and P1 which by definition can be written as

P0(ab|xy) =
∑
λ∈L0

q0(λ) rA,0(a|x, λ) rB,0(b|y, λ), (1.19)

P1(ab|xy) =
∑
λ∈L1

q1(λ) rA,1(a|x, λ) rB,1(b|y, λ). (1.20)

Since the actual values of the hidden variable λ do not matter (they merely serve as
labels), we can without loss of generality assume that L0 and L1 are disjoint, i.e. L0∩L1 =
∅. It is easy to see that a convex combination P = pP0 + (1 − p)P1 can be written as

P(ab|xy) =
∑
λ∈L

q(λ) rA(a|x, λ) rB(b|y, λ) (1.21)

for

L := L0 ∪ L1, (1.22)

q(λ) :=

pq0(λ) if λ ∈ L0,

(1 − p)q1(λ) if λ ∈ L1,
(1.23)

rA(a|x, λ) :=

rA,0(a|x, λ) if λ ∈ L0,

rA,1(a|x, λ) if λ ∈ L1,
(1.24)

rB(b|y, λ) :=

rB,0(b|y, λ) if λ ∈ L0,

rB,1(b|y, λ) if λ ∈ L1.
(1.25)

To show that the quantum set Q is convex let us first prove the Qfin is convex. Suppose
we are given two quantum points from Qfin along with their realisations

P0 : [Px
a]0, [Qy

b ]0, ρ0, (1.26)

P1 : [Px
a]1, [Qy

b ]1, ρ1. (1.27)

Suppose that the first realisation acts on HA0 ⊗HB0 , while the second realisation acts
on HA1 ⊗ HB1 . Since the two realisations can have distinct dimension and for us it
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1 Bell nonlocality

is convenient to have realisations of the same dimension, let us first embed them in
CdA ⊗ CdB , where

dA := max{dim(HA0),dim(HA1)}, (1.28)
dB := max{dim(HB0),dim(HB1)}. (1.29)

Since all the Hilbert spaces are finite-dimensional we are guaranteed that dA, dB < ∞.
To simplify the notation we will not distinguish between the original realisations and
the realisations embedded in CdA ⊗ CdB .

Consider a realisation that acts onHAC⊗HBC⊗HAQ⊗HBQ , where dim(HAC) = dim(HBC) =
2, dim(HAQ) = dA and dim(HBQ) = dB. The A registers belong to Alice, while the B
registers belong to Bob. Consider a bipartite state of the form:

ρAB := p|0〉〈0 | ⊗ |0〉〈0 | ⊗ ρ0 + (1 − p)|1〉〈1 | ⊗ |1〉〈1 | ⊗ ρ1, (1.30)

while the measurements of Alice and Bob are given by4

Px
a := |0〉〈0 | ⊗ [Px

a]0 + |1〉〈1 | ⊗ [Px
a]1, (1.31)

Qy
b := |0〉〈0 | ⊗ [Qy

b ]0 + |1〉〈1 | ⊗ [Qy
b ]1. (1.32)

It is easy to verify that this leads to a convex combination of the original points given
by pP0 + (1− p)P1. This construction necessarily increases the local dimensions of Alice
and Bob, but this is not a problem since the definition of the quantum set does not put
any restrictions on dimensionality. In fact, this feature turns out to be necessary: it is
known that imposing a dimension bound in the definition of the quantum set might
lead to non-convex sets.

This construction shows that Qfin is a convex set and now it suffices to combine it with
the standard result that the closure of a convex set is a convex set.

Convexity ofNS is an immediate consequence of the linearity of all the conditions.

To show compactness recall that a subset of Rn is compact if and only if it is closed and
bounded. To see that all three correlation sets are bounded note that they are contained
in the unit ball according to the vector∞-norm: |P(ab|xy)| ≤ 1 for all a, b, x, y.

Since we defined Q to be the closure of Qfin, it is closed by definition. The no-signalling
set is closed because it is an intersection of finitely many closed sets (every equality
constraint can be replaced by two non-strict inequalities, a = b ⇐⇒ a ≥ b ∧ a ≤ b, and
every non-strict inequality defines a closed set). The local set is also closed, but to see it
we need some extra understanding, which we develop in the next section.

4Since the operators of Alice and Bob act on HAC ⊗HAQ and HBC ⊗HBQ , respectively, one has to be careful
about the order of the tensor factors when computing the product of Px

a ⊗Qy
b and ρAB.
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1.5 The local and no-signalling sets as polytopes

A particularly simple class of compact convex sets consists of those that have only a
finite number of extremal points. Such sets are known as polytopes and their extremal
points are often referred to as vertices. Two out of three correlations sets defined above
turn out to be polytopes.

To see that the local set is a polytope we have to realise that if a probability point can be
written in the local form given in Eq. (1.3), it can also be written in the same form using
only deterministic response functions, i.e. functions which only take values 0 and 1.
This comes from the fact that we can “push back” all the randomness into the shared
variable λ. In the worst case scenario we have to include an additional probability
distribution over n outcomes for every measurement setting of Alice and Bob and for
every value of λ. This leads to a larger but still finite hidden variable. The ability
to restrict our attention to deterministic response functions is extremely convenient
because there is only a finite number of them. More specifically, there are precisely
nk (distinct) functions from a set of size k to a set of size n. Therefore, we have nk

deterministic response functions for Alice and the same number for Bob, which gives
rise to n2k deterministic points in total. Each deterministic point is labelled by a pair of
functions fA, fB : [k]→ [n] and can be compactly written down as

P(ab|xy) =

1 if a = fA(x) and b = fB(y),
0 otherwise.

(1.33)

The fact that every point in L can be written as a convex combination of points from a
fixed finite set implies thatL has a finite number of extremal points, i.e. it is a polytope.
It is not hard to see that every deterministic point is extremal, i.e. the local polytope has
precisely n2k vertices.

The no-signalling set is defined as an intersection of a finite number of closed half-spaces.
It is well-known in polytope theory that if a finite intersection of closed half-spaces yields
a bounded set, then this set must be a polytope. As a consequence every polytope can be
described in two equivalent but complementary ways: either by specifying its vertices
or by specifying the half-spaces. It is worth pointing out that in both cases the minimal
(shortest) descriptions turn out to be unique.

In our case the local set is naturally described by its extremal points (i.e. the deterministic
points), while the no-signalling set is described by the half-spaces. It is therefore natural
to try to compute the other description for each set. While there exist algorithms that
allow us to go from one description to the other, they are not efficient which becomes a
problem when the size of the problem grows. In the most general setting this problem
has only been solved for the scenarios corresponding to (n, k) = (2, 2), (2, 3) and (3, 2).
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1 Bell nonlocality

If we compute the half-space description of the local set we will obtain three types of
conditions. The first simply requires all the probabilities to be non-negative:

P(ab|xy) ≥ 0. (1.34)

Such conditions are known as positivity facets and they are not particularly interesting:
clearly, they must be satisfied by any reasonable theory. The second type are the no-
signalling conditions mentioned above (recall that equality a = b is equivalent to the
conjuction of a ≥ b and b ≥ a). The remaining conditions are known as facet Bell
inequalities. Since these constraints can (at least in principle) be violated by more
general theories, we interpret them as limitations on the strength of correlations in
local-realistic theories. Since any (no-signalling) probability point that does not belong
to Lmust violate some facet Bell inequality, we often use the terms “generate nonlocal
correlations” and “violate a Bell inequality” interchangeably.

Alternatively, if we compute a vertex description of the no-signalling set, we find that
there are two types of vertices. First of all, we find all the vertices of the local set, i.e. the
deterministic points. The remaining vertices are known as the extremal no-signalling
points.

A brief summary of these observations can be found in the table below. What is
important to remember is that the local set is smaller, so it has fewer extremal points (in
the vertex description) and more linear constraints (in the half-space description). The
no-signalling set is larger, so it has more extremal points and fewer constraints.

local set no-signalling set

vertex description deterministic points
deterministic points

extremal no-signalling points

half-space description
positivity facets

no-signalling conditions
facet Bell inequalities

positivity facets
no-signalling conditions

1.6 The membership problem

Having defined the three sets of correlations it is natural to ask whether these definitions
are convenient to work with. In other words, given a probability point P can we
efficiently check whether it belongs to L, Q orNS?

Suppose we are given a probability point, which we already assume to be composed
of valid probability distributions, i.e. non-negativity and normalisation conditions are
satisfied. To check whether P ∈ NS it suffices to check the no-signalling conditions
given in Eq. (1.10) and this can be done by evaluating 2nk2 linear equalities. This is

13



1 Bell nonlocality

an “easy” task because its complexity5 scales polynomially with the input parameters
n and k. Clearly, the half-space description is convenient for checking whether a point
lies inside a set.

Checking whether P ∈ L is slightly harder. Recall that L can be defined through its
extremal points (the deterministic vertices) so essentially we are asking whether there
exists a convex combination of the deterministic vertices which yields precisely the
target point P. If we denote the deterministic vertices by {D j}

N
j=1, we are simply looking

for a probability distribution {q j}
N
j=1 such that

P =

N∑
j=1

q jD j. (1.35)

This is an instance of an optimisation problem known as a linear program (LP) and such
problems are considered “easy” from the complexity-theoretic point of view because
they can be solved using resources polynomial in the size of the program. However, we
observed earlier that N = n2k, i.e. the size of our problem is already exponential in the
number of settings. Therefore, solving such problems quickly becomes infeasible as k
increases. An alternative approach would be to first find the half-space description of
L and then check whether P satisfies all the linear inequalities. However, as mentioned
before finding the half-space description of L is hard and even if we manage to do so,
it might happen that the number of inequalities to check will be exponential.

Checking whether P ∈ Q turns out to be even harder and this is largely due to the fact
that we know nothing about the dimension of the quantum realisations to consider. If
we wanted to find out whether P has a quantum realisation where the systems of Alice
and Bob have dimension d, we could in principle enumerate/parameterise all possible
quantum realisations acting on Cd

⊗ Cd. This is exponentially hard but in principle
could be done (given access to unlimited computational power). However, the fact that
we have to do this for all d ≥ 2 renders the task completely infeasible. Since there exist
probability points P which can only be achieved in the limit of d → ∞, searching for
finite-dimensional realisations does not necessarily help us in answering the original
question. The situation is, however, not entirely hopeless and later we will discuss some
tools which allow us to study the quantum set.

1.7 Basic notions of convex geometry

The local and no-signalling sets are polytopes which in particular implies that their
geometry is rather simple. However, the quantum set is not a polytope and to describe
its geometry we need some additional notions from convex geometry.

5In this context complexity can be thought of as the number of operations one must perform to accomplish
a computation.
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The dimension of a convex set is defined as the dimension of the smallest affine subspace
which contains the entire set.6 For instance a polytope inR3 whose 4 vertices are given by
(x, y, z) = (±1,±1, 1) is two-dimensional because it is contained in the two-dimensional
affine subspace given by z = 1. Intuitively, the dimension of a convex set is the minimal
number of real parameters required to uniquely identify every point in that set.

The concept of extremal points introduced in Section 1.4 admits an elegant generalisa-
tion. Let S ⊆ Rn be a convex set and F be a non-empty convex subset of S. We say that
F is a face of S if for every point z ∈ F the fact that x, y ∈ S satisfy z = px + (1 − p)y
for some p ∈ (0, 1) implies that x, y ∈ F . In other words, points in F can only be
convexly-decomposed into other points in F . This captures the notion that the whole
set F lies at the boundary of S. Since every face of S is a convex set, its dimension is
well-defined and we can group faces according to their dimension. Zero-dimensional
faces, i.e. those composed of a single point, are precisely the extremal points of S. The
largest dimension of a face equals the dimension of S, which as shown above can be
strictly smaller than the dimension of the space in which S is embedded. It is not hard
to see that the unique face of the maximal dimension is the set S itself. To exclude this
possibility we often talk about proper faces, i.e. faces satisfying F , S.

Example. List all faces of a unit cube and a unit ball inR3 and order them by dimension.

Polytopes exhibit a particularly simple facial structure. For a polytope of dimension d
we are guaranteed to find faces of every dimension from 0 to d. Vertices correspond to
zero-dimensional faces, while the largest proper faces, i.e. faces of dimension d − 1, are
known as facets. Facets are important because they appear in the minimal half-space
description of the polytope, i.e. the description in terms of the smallest number of linear
inequalities. Another concept that turns out to be useful in the study of convex sets is
that of a (real) linear functional, i.e. a function f : V → R which satisfies linearity. For
our purposes it suffices to consider the case of V = Rn and then a linear functional is
represented by a real vector f = { f j}

n
j=1 ∈ R

n. Evaluating the functional on a particular
point x = {x j}

n
j=1 ∈ R

n corresponds to simply taking the inner product: 〈 f , x〉 =
∑n

j=1 f jx j.

One reason why linear functionals are useful is the fact that they lead to a more detailed
classification of points of a convex set. We have previously introduced the notion of an
extremal point and let us now define two additional notions. Let S ∈ Rn be a convex
set. We say that P ∈ S is a boundary point if there exists a linear functional which
takes distinct values on the points of S and which is maximised at P (the first condition
is necessary to exclude trivial functionals which are simultaneously maximised by all
points in S). We say that P is an exposed point of S if there exists a linear functional
which is maximised uniquely by P. While every exposed point is extremal, not every
extremal point is exposed. Fig. 1.1 shows different types of points of a convex set.

6It is appropriate to consider affine rather than linear subspaces because the dimension should be invariant
under shifts. Recall that the dimension of the affine space generated by vectors {x1, x2, . . . , xn} is precisely
the dimension of the linear space generated by vectors {x2 − x1, x3 − x1, . . . , xn − x1}.
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Convex Set

Non-extremal
boundary point

Exposed
point

Exposed
point

Interior point
Non-exposed
extremal
point

Figure 1.1: Different types of points of a convex set. (Figure taken from
arXiv:1710.05892 reproduced with the authors’ permission.)

Another important application of linear functionals is the hyperplane separation theo-
rem (in its more general variants also known as the Hahn–Banach theorem).

Hyperplane separation theorem. Let S be a closed convex set in Rn and let x ∈ Rn

be a point outside of S. Then, there exists a linear functional that separates x from S,
i.e. there exists f ∈ Rn and c ∈ R such that 〈 f , y〉 ≤ c for all y ∈ S but 〈 f , x〉 > c.

What this says is that whenever a point does not belong to a closed convex set this can
be compactly demonstrated by finding a suitable linear functional. That is why we are
often interested in computing the maximal value of a fixed functional over a set:

β := sup
y∈S
〈 f , y〉. (1.36)

If we then encounter a point x such that 〈 f , x〉 > β, we immediately deduce that x < S.

A simple corollary of the hyperplane separation theorem is that every closed convex set
can be described as an intersection (possibly infinite) of closed half-spaces.

Example. Give a description of the unit disc defined in Eq. (1.18) in terms of closed
half-spaces.

We have earlier said that every polytope can be described in two complementary ways:
either by extremal points or by half-spaces. We now see that this statement holds for
every compact convex set. If at least one of the descriptions is finite (i.e. a finite number
of extremal points or a finite intersection of half-spaces), then so is the other description
and we are dealing with a polytope. On the other hand, if our convex set is not a
polytope, no finite description (of either type) can be found. This is precisely why
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1 Bell nonlocality

studying and understanding the quantum set, which is not a polytope, poses such a
challenge.

Finally, let us briefly explain how for a polytope one can derive the halfspace description
from the vertex description and vice versa.

Suppose we are given a polytope P ⊆ Rn and for simplicity let us assume that its
dimension equals n, i.e. it is full-dimensional. Given its vertices {V j}

m
j=1 our goal is to

find all its facets, i.e. hyperplanes of dimension n− 1 which delimit the polytope. Every
facet contains a certain number of vertices so to find all facets we can simply try every
subset of the vertices. For every subset we have to see whether it defines a unique
hyperplane and whether the entire set lies on one side of the hyperplane. While not
every subset of vertices leads to a facet and the same facet can arise from distinct subsets,
this already shows that there is only a finite number of facets. Similarly, if we are given
a halfspace description of a polytope and we want to find the vertices we have to realise
that vertices are points which saturate the maximal number of halfspace inequalities.
Here again we can try all subsets of halfspace conditions and check which of them are
saturated only by a single point. Then, we would check whether this point actually
belongs to P. In this way we are guaranteed to find all the vertices of P.

The procedures explained above are clearly not optimal, but they show that these
problems can be solved in a finite number of steps and lead to a finite solution.

1.8 Dimension of the correlation sets

In the previous section we have defined the dimension of a convex set. Let us now
show that all three correlation sets have the same dimension given by:

D := 2(n − 1)k + (n − 1)2k2. (1.37)

The argument consists of two parts. First, we show that any no-signalling point can
be parametrised by D real numbers, which implies that dim(NS) ≤ D. Then, we give
an explicit choice of D + 1 points from the local set and show that they are affinely
independent, which allows us to conclude that dim(L) ≥ D. Since L ⊆ Q ⊆ NS, we
deduce that dim(L) = dim(Q) = dim(NS) = D.

Let us first argue that given the following quantities:

P(a|x) for a ∈ [n − 1], x ∈ [k], (1.38)
P(b|y) for b ∈ [n − 1], y ∈ [k], (1.39)

P(ab|xy) for a, b ∈ [n − 1], x, y ∈ [k] (1.40)
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we are able to reconstruct all the probabilities of a no-signalling point. The missing
marginal terms can be computed from normalisation, e.g.:

n∑
a=1

P(a|x) = 1 =⇒ P(n|x) = 1 −
n−1∑
a=1

P(a|x). (1.41)

To compute P(nb|xy) for b ≤ n − 1 or P(an|xy) for a ≤ n − 1 we use the no-signalling
condition, e.g.:

n∑
a=1

P(ab|xy) = P(b|y) =⇒ P(nb|xy) = P(b|y) −
n−1∑
a=1

P(ab|xy). (1.42)

Finally, to compute P(nn|xy) we use the normalisation condition
∑

ab P(ab|xy) = 1. Note
that Eqs. (1.38)–(1.40) specify precisely D real parameters, which implies that dim(NS) ≤
D.

Let us now specify D + 1 points from L which are affinely independent. It will be
convenient to use the parametrisation introduced in Eqs. (1.38)–(1.40), i.e. we represent
these local points as vectors inRD. The first point corresponds to the vector of all zeroes.
Then, we have 2(n−1)k points which have a single 1 in a coordinate corresponding to one
of the marginals (of either Alice or Bob). Finally, we have (n− 1)2k2 points which have a
1 in exactly one coordinate corresponding to a correlator term and another two 1s in the
matching marginal terms (this is required since P(ab|xy) = 1 =⇒ P(a|x) = P(b|y) = 1).
Let us denote these points by x j for j = {0, 1, . . . ,D} and recall that these points are
affinely independent if and only if the points {x1 − x0, x2 − x0, . . . , xD − x0} are linearly
independent. Since x0 = 0, this reduces to showing that vectors {x1, x2, . . . , xD} are
linearly independent and this is easily proved by inspection by first looking at the
correlator coordinates and then the marginal coordinates.

1.9 Bell functionals and Bell inequalities

A Bell functional is a real linear functional acting on the space of probability points. We
will represent it by a real vector F = { fabxy}abxy ∈ R

n2k2
and the action of the functional

on a probability point is given by

〈F,P〉 :=
∑
abxy

fabxyP(ab|xy). (1.43)
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For every Bell functional F we define the local, quantum and no-signalling value as
the largest value achieved by probability points in that set. More specifically, we have

βL := max
P∈L
〈F,P〉, (1.44)

βQ := max
P∈Q
〈F,P〉, (1.45)

βNS := max
P∈NS

〈F,P〉, (1.46)

By the trivial inclusions L ⊆ Q ⊆ NSwe immediately deduce that βL ≤ βQ ≤ βNS.

We are particularly interested in functionals for which βQ > βL as they can be used
as certificates of non-classicality: if we are given a probability point which satisfies
〈F,P〉 > βL we immediately know it must be outside of the local set.7 It is worth
pointing out that in some texts any condition of the form 〈F,P〉 ≤ βL is referred to as
a Bell inequality, but one should remember that this is different from the facet Bell
inequalities which arise when analysing the local polytope.

Computing the no-signalling value of a Bell functional is easy as it can be cast as a
linear program. To compute the local value note that the maximum of a linear function
over a compact convex set is always achieved at some extremal point, i.e. it suffices to
maximise over the deterministic vertices:

βL = max
j∈[N]
〈F,D j〉. (1.47)

However, as N = n2k this quickly becomes infeasible.

Not surprisingly computing the quantum value is even harder. If we restrict ourselves
to a fixed dimension we could in principle enumerate all the quantum realisations as
explained in Section 1.6. However, since now we actually have a linear functional to
optimise, we can be slightly smarter and use the so-called see-saw algorithm. Recall
that a quantum realisation consists of three components: the quantum state |ψ〉, the
measurements of Alice {Px

a} and the measurements of Bob {Qy
b }. The see-saw method is

based on the observation that optimising one component can be done efficiently if the
other two components are kept unchanged. For instance to find the optimal state for
fixed measurements we first construct the Bell operator:

W =
∑
abxy

fabxyPx
a ⊗Qy

b . (1.48)

It should now be clear that determining the optimal state is equivalent to computing the
largest eigenvalue of the Bell operator and determining the corresponding eigenspace.
Optimising over the measurements of one party is slightly harder, but turns out to be
an instance of a semidefinite program (SDP), a generalisation of linear programming

7This is analogous to the concept of entanglement witnesses discussed in the first part of the course.
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which can still be solved efficiently. We can now alternate over optimising the three
components until we reach a local maximum. This might not be the global maximum so
to make the final result slightly more trustworthy we should repeat the entire procedure
multiple times with randomly-generated starting points. However, even in simple sce-
narios (small number of settings, small number of outcomes and quantum realisations
of low dimension) performing a truly exhaustive search is not possible. Hence, this
method should only be used as a way of obtaining lower bounds on the quantum value
or obtaining candidates for optimal realisations, while upper bounds must be obtained
through a different approach.

Let us now briefly discuss one of the simplest methods to derive an upper bound on
the quantum value a Bell functional. Our goal is to give an upper bound on 〈W, ρAB〉

which holds for all possible quantum realisations. It is clear that

〈W, ρAB〉 ≤ λmax(W), (1.49)

where λmax(·) denotes the largest eigenvalue of a Hermitian operator. Therefore, our
task reduces to bounding the spectrum of W from above, which can be conveniently
written as an operator inequality. Given two Hermitian operators X,Y acting on the
same Hilbert space we write X ≥ Y to mean X − Y ≥ 0. It is clear that if one of the
operators is proportional to the identity, this inequality is equivalent to a bound on the
spectrum of the other operator. In our case the inequality λmax(W) ≤ λ for some λ ∈ R
is equivalent to

W ≤ λ1. (1.50)

Hence, our goal is to show that for all choices of measurements operators we have

λ1 −W ≥ 0. (1.51)

One way of proving that a real-valued function f (x) is non-negative is to find a sum-
of-squares (SOS) decomposition, i.e. a family of real-valued functions {p j(x)} j such
that

f (x) =
∑

j

[p j(x)]2. (1.52)

Analogously, to show that λ1−W ≥ 0 we will look for Hermitian operators {L j} j, which
now have to depend on the measurement operators, such that

λ1 −W =
∑

j

L2
j . (1.53)

Finding such a decomposition which is valid for all measurements operators of Alice
and Bob implies that βQ ≤ λ. If in addition we find a quantum realisation which achieves
this upper bound, we have proven that βQ = λ.

So far we have dedicated our time to formalising the scenario and familiarising ourselves
with some basic tools to tackle it. We should now be able to appreciate the complexity
of the problem. Indeed, despite a large body of works dedicated to Bell nonlocality
several important problems remain open. In the next section we will see that already
the simplest non-trivial Bell scenario turns out to be quite complicated.
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2 The CHSH scenario

2.1 Preliminaries

The simplest scenario in which the three correlation sets differ corresponds to two
measurement setting and two outputs and let us refer to it as the CHSH scenario.
Recall that the observed statistics are fully described by P = {P(ab|xy)} ∈ R16 and in the
CHSH scenario it is customary to think of the settings and outcomes as bits, so let us
for this section assume that a, b, x, y ∈ {0, 1}. The formula given in Section 1.8 implies
that in this scenario all three correlation sets are 8-dimensional. While we could use the
representation given in Section 1.8, there exists a more convenient parametrisation in
terms of 8 real parameters. For x, y ∈ {0, 1} define

〈Ax〉 = P(a = 0|x) − P(a = 1|x),
〈By〉 = P(b = 0|y) − P(b = 1|y), (2.1)

〈AxBy〉 = P(a = b|xy) − P(a , b|xy).

The first two terms depend only on the marginal distributions (these are well-defined
thanks to the no-signalling condition), while the last term captures the correlations
between Alice and Bob. We will refer to the terms 〈Ax〉 and 〈By〉 as marginals and to the
terms 〈AxBy〉 as correlators. Collectively we will refer to these variables as the reduced
coordinates.

It is clear that all these numbers range from −1 to 1. To see that knowing these 8 real
parameters allows us to reconstruct the entire distribution note that

P(ab|xy) =
1
4

(
1 + (−1)a

〈Ax〉 + (−1)b
〈By〉 + (−1)a+b

〈AxBy〉
)
. (2.2)

The transformation which takes us from probabilities to marginals and correlators is
a linear transformation, which implies that geometric properties like extremality or
exposedness remain unchanged. Note, however, that it is not isometric, which means
that lengths and angles between vectors are not necessarily preserved.

In our case this transformation maps an 8-dimensional subspace of R16 onto R8. This
is convenient because for two reasons: (a) in the smaller space the correlation sets are
full-dimensional and (b) the origin plays the special role of a point of no correlations.
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Note that the transformation above relies only on the fact that there are two possible
outcomes and, therefore, it works for any number of settings. There exist generalisations
to a higher number of outcomes but then some convenient and elegant features are lost.

From now we will think of a probability point P as a vector in R8 defined as

P :=
(
〈A0〉, 〈A1〉, 〈B0〉, 〈B1〉, 〈A0B0〉, 〈A0B1〉, 〈A1B0〉, 〈A1B1〉

)
. (2.3)

Similarly, a Bell functional on the reduced coordinates corresponds to 8 real numbers
{ax, by, cxy}x,y=0,1 and its value on the probability point specified above equals

β = a0〈A0〉 + a1〈A1〉 + b0〈B0〉 + b1〈B1〉

+ c00〈A0B0〉 + c01〈A0B1〉 + c10〈A1B0〉 + c11〈A1B1〉.
(2.4)

As explained before a deterministic point can be fully specified by listing the outcomes
of Alice and Bob for every measurement setting. Let use denote the outcome of Alice for
measurement setting x by ax ∈ {0, 1} and the outcome of Bob for measurement setting y
by by. It is a simple exercise to see that the corresponding probability point is given by

P =
(
(−1)a0 , (−1)a1 , (−1)b0 , (−1)b1 , (−1)a0+b0 , (−1)a0+b1 , (−1)a1+b0 , (−1)a1+b1

)
. (2.5)

There are 16 deterministic points and let us denote them D1, . . . ,D16. It is easy to check
that

16∑
j=1

D j = (0, 0, 0, 0, 0, 0, 0, 0) =: P0. (2.6)

In this sense the origin lies at the centre of the local set. If we compute the corresponding
probability distribution, we obtain P(ab|xy) = 1

4 for all a, b, x, y, i.e. the outcomes of Alice
and Bob are maximally random and uncorrelated.

Example. If the local set were to have a centre of symmetry, P0 would be a natural
candidate. Does the reflection of P1 = (1, 1, 1, 1, 1, 1, 1, 1) about P0 belong to L?

Example. Given a particular deterministic strategy which achieves P investigate how the
following transformations of the strategy affect the resulting coordinates: (a) a′x := 1−ax
and b′y = by and (b) a′x := 1 − ax and b′y = 1 − by. Do they imply any symmetries of the
local polytope?

The local polytope in this scenario is defined by the 16 deterministic vertices of the form
specified in Eq. (2.5) and turns out to have 24 facets. The first 16 of them correspond to
positivity constraints P(ab|xy) ≥ 0, which in the new coordinate system read

1 + (−1)a
〈Ax〉 + (−1)b

〈By〉 + (−1)a+b
〈AxBy〉 ≥ 0 (2.7)

for all a, b, x, y. Since the new coordinates are no-signalling by definition, we will not
find any no-signalling conditions among the facets. All the remaining facets are known
as the Clauser–Horne–Shimony-Holt (CHSH) facets and the first representative reads

〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉 ≤ 2. (2.8)
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Another facet inequality reads

〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉 ≥ −2. (2.9)

Note that these two inequalities in some sense correspond to the “opposite” facets
of the local set. Realising that the single minus sign can go with any of the four
correlators explains why there are 8 CHSH facets in total. The CHSH facets turn out
to be important, so it is convenient to define the corresponding functional. The CHSH
functional, denoted by FCHSH, reads

〈FCHSH,P〉 := 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉. (2.10)

Equivalently in terms of the coefficients specified in Eq. (2.4) it is given by

ax = by = 0 and cxy = (−1)xy. (2.11)

Then, the inequality given in Eq. (2.8) can be simply written as 〈FCHSH,P〉 ≤ 2 and
we say that the local value of the CHSH functional equals 2. The no-signalling set
in this scenario is defined by positivity and no-signalling constraints. However, the
coordinates we have chosen automatically take care of the no-signalling constraints,
which can be seen directly from Eq. (2.2). In other words, in the new coordinate
system the only constraints we need to impose to recover the no-signalling set are the
16 positivity constraints. The resulting polytope turns out to have 24 vertices: 16 of
them are the deterministic points mentioned before while the remaining 8 are known
as Popescu–Rohrlich (PR) boxes. The standard PR box reads

PPR := (0, 0, 0, 0, 1, 1, 1,−1) (2.12)

and it is easy to check 〈FCHSH,PPR〉 = 4. It is clear that this is the largest value of
the CHSH functional possible simply because every correlator in the definition of the
functional has modulus of at most 1. Therefore, the no-signalling value of the CHSH
functional equals 4. It is easy to check that the corresponding probability distribution
admits a particularly elegant description:

P(ab|xy) =

1
2 if a ⊕ b = xy,
0 otherwise.

(2.13)

There is also a PR box “on the other side” of the no-signalling set given by

(0, 0, 0, 0,−1,−1,−1, 1). (2.14)

As before the minus sign can go with any of the four correlators which gives rise to the
total of 8 PR boxes.

In the CHSH scenario there is an elegant duality between the facet Bell inequalities and
the extremal no-signalling boxes: every facet Bell inequality is violated by exactly one
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PR box so we may think that these objects come in pairs. Unfortunately, this property
does not hold in larger scenarios and in general there is no one-to-one mapping between
facet Bell inequalities and no-signalling extremal boxes.

The beauty of polytopes lies in the fact that they are simple. Once we have both the
vertex and the half-space description of a polytope, nothing else can be added to enhance
our understanding. Therefore, we have concluded our investigation of the local and
no-signalling sets in the CHSH scenario.

2.2 The quantum set

The quantum set, on the other hand, turns out to be much more complicated. So far
we only know it is a closed convex set which sits in between the two polytopes. Before
proceeding any further let us reveal a convenient link between the reduced coordinates
introduced above and the quantum realisation.

A measurement with two outcomes is given by two positive semidefinite operators
{P0,P1}, but these are not independent: they are constrained by the normalisation
condition P0 + P1 = 1. Therefore, such a measurement can be fully described by a single
operator and for our purposes it is convenient to choose

A := P0 − P1. (2.15)

We will call A a binary observable or simply observable representing the two-outcome
measurement {P0,P1}. To see that the observable allows us to reconstruct the original
measurement note that

P0 =
1 + A

2
and P1 =

1 − A
2

. (2.16)

Observables are Hermitian operators and since

A ≤ P0 ≤ 1 and A ≥ −P1 ≥ −1, (2.17)

we immediately see that their eigenvalues are contained in the interval [−1, 1]. This can
be compactly written as ‖A‖ ≤ 1, where ‖·‖ denotes the Schatten∞-norm. If the original
measurement is projective, the only allowed eigenvalues of A are±1, which implies that
A2 = 1. For non-projective measurements we can only deduce that A2

≤ 1.

The observables relevant in the CHSH scenario are

Ax := Px
0 − Px

1 and By := Qy
0 −Qy

1 (2.18)

and we can now think that the quantum realisation is fully described by the state ρAB,
two observables of Alice A0,A1 and two observables of Bob B0,B1. One should now
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be able to see that the reduced coordinates introduced in Eq. (2.1) are in fact quantum-
inspired. It is easy to check that

〈Ax〉 = Tr [(Ax ⊗ 1)ρAB], (2.19)
〈By〉 = Tr [(1 ⊗ By)ρAB], (2.20)

〈AxBy〉 = Tr [(Ax ⊗ By)ρAB]. (2.21)

Moreover, the Bell operator corresponding to a Bell functional specified in Eq. (2.4)
reads

W = a0A0 ⊗ 1 + a1A1 ⊗ 1 + b01 ⊗ B0 + b11 ⊗ B1 (2.22)
+ c00A0 ⊗ B0 + c01A0 ⊗ B1 + c10A1 ⊗ B0 + c11A1 ⊗ B1. (2.23)

Since the only difference between the local and no-signalling set are the CHSH facets, it
is natural to start the investigation of the quantum set by computing the quantum value
of the CHSH functional. The Bell operator corresponding to the CHSH functional reads

W = A0 ⊗ (B0 + B1) + A1 ⊗ (B0 − B1). (2.24)

To derive an upper bound on the quantum value we will provide a SOS decomposition
as explained in Section 1.9. If

L0 := A0 ⊗ 1 − 1 ⊗
B0 + B1
√

2
, (2.25)

L1 := A1 ⊗ 1 − 1 ⊗
B0 − B1
√

2
, (2.26)

then a simple calculation shows that

L2
0 + L2

1 = 41 ⊗ 1 −
√

2 W, (2.27)

where we have assumed that the measurements are projective, i.e. A2
x = 1 and B2

y = 1.
This implies that W ≤ 2

√
21, which is equivalent to βQ ≤ 2

√
2. This upper bound can

be saturated by performing the following measurements:

A0 := X, B0 :=
X + Z
√

2
, (2.28)

A1 := Z, B1 :=
X − Z
√

2
(2.29)

on the maximally entangled state of two-qubits:

|Φ+
〉 :=

1
√

2
(|00〉 + |11〉

)
. (2.30)
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2 The CHSH scenario

This implies that the quantum value of the CHSH functional equals 2
√

2, which should
be compared with the local and no-signalling values equal to 2 and 4, respectively. This
implies that already in the CHSH scenario we have strict inclusions L ( Q ( NS.

Computing the quantum value turns out to be easy for the CHSH functional but this is
not always the case. Even in the CHSH scenario we do not have an analytic description
of the quantum set or a simple analytic expression for the quantum value of an arbitrary
Bell functional. Fortunately, there exist some numerical tools to tackle the problem and
let us discuss one of them which relies on an important result from linear algebra known
as Jordan’s lemma.

Jordan’s lemma. Let P and Q be two projectors acting on a separable Hilbert space H.
Then, there exists a basis on H such that P and Q are block-diagonal with blocks of size
either 2 × 2 or 1 × 1.

Intuitively Jordan’s lemma tells us that all the interesting features of how two projectors
interact can already be found in the qubit case. A reformulation of Jordan’s lemma
states that the identity on H can be decomposed into projectors {Π j} j such that

Tr Π j = 1 or Tr Π j = 2 (2.31)

and
[P,Π j] = [Q,Π j] = 0. (2.32)

We will now see that Jordan’s lemma has deep implications on the structure of the
quantum set in the CHSH scenario.

Consider a quantum realisation given by {Px
a}, {Q

y
b } and ρAB. As mentioned before we

can without loss of generality assume that the measurements are projective. Let us now
take two projectors of Alice which correspond to distinct measurement settings, e.g. P0

0
and P1

0, and apply Jordan’s lemma to them. This yields a family of projectors which we
denote by ΠA, j. Since Px

1 = 1 − Px
0, these projectors commute with all the measurement

operators of Alice, not just the two we started with. This allows us to write

P(ab|xy) = Tr(Px
a ⊗Qy

b ρAB) = Tr
(∑

j

ΠA, jPx
a ⊗

∑
k

ΠB,kQy
b ρAB

)
(2.33)

=
∑

jk

Tr
(
ΠA, jPx

aΠA, j ⊗ΠB,kQy
bΠB,k ρAB

)
(2.34)

=
∑

jk

Tr
[
Px

a ⊗Qy
b (ΠA, j ⊗ΠB,k ρAB ΠA, j ⊗ΠB,k)

]
, (2.35)

where we have used the completeness relation, then projectivity and commutativity
and finally the cyclic property of the trace.

Let
q jk := Tr(ΠA, j ⊗ΠB,k ρAB ΠA, j ⊗ΠB,k). (2.36)
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2 The CHSH scenario

Since the trace of a positive semidefinite operator vanishes if and only if the actual
operator vanishes, we note that if q jk = 0, then we may ignore the corresponding term
in the sum given in Eq. (2.35). In the remaining cases, i.e. whenever q jk > 0, let us define

τAB, jk :=
1

q jk
(ΠA, j ⊗ΠB,k ρAB ΠA, j ⊗ΠB,k) (2.37)

and note that
P(ab|xy) =

∑
jk

q jk Tr(Px
a ⊗Qy

b τAB, jk), (2.38)

where the sum is taken only over pairs for which q jk > 0. Clearly, τAB, jk is a normalised
quantum state. If either of the projectors is rank-1 it necessarily has the product form,
i.e. τAB, jk = τA⊗τB, and hence the outcomes of Alice and Bob will be uncorrelated. If both
projectors are rank 2, the resulting state is a two-qubit state (although embedded in a
higher-dimensional Hilbert space). This implies that any probability point in the CHSH
scenario is a convex combination of points which can be achieved using two-qubit states.
One one hand this implies that all extremal points of the quantum set can be achieved
by two-qubit states. On the other hand, combining this with Carathéodory’s theorem1

implies that every point of Q can be achieved using a finite-dimensional realisation,
i.e. that in the CHSH scenario Qfin = Q.

Since all the extremal points can be achieved by two-qubit realisations, the quantum
value of any Bell functional can be found by optimising over such realisations. As
mentioned before finding the optimal state for fixed observables (measurements) corre-
spond to finding the largest eigenvalue of the Bell operator. Therefore, our task reduces
to parametrising the local observables of Alice and Bob. First of all, we only need
to parameterise observables corresponding to projective measurements, i.e. satisfying
A2 = 1. If any observable equals±1, then the statistics will be local (because commuting
measurements give rise to local statistics). Therefore, the only non-trivial case happens
when all the observables have exactly 1 eigenvalue of each sign. However, it is then
easy to see that any pair of such observables is unitarily equivalent to

A0 = X, (2.39)
A1 = cos a X + sin a Z (2.40)

for some a ∈ [0, π].2 Since applying local unitaries does not change the spectrum, we
can assume that the observables of Alice are of this form. Similarly, we can assume that
the observables of Bob are given by

B0 = X, (2.41)
B1 = cos b X + sin b Z (2.42)

1Carathéodory’s theorem states that if a point x ∈ Rn lies in the convex hull of some set S, then it can be
written as a convex combination of at most n + 1 points from S.

2Observe that such observables can be interpreted as unit vectors in the Bloch sphere and the only
property of a pair of vectors on a Bloch sphere which is invariant under rotations is the angle between
them.
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2 The CHSH scenario

for some b ∈ [0, π]. Using this parametrisation we can construct the Bell operator which
we denote by W(a, b). It should now be clear that

βQ = max
a,b∈[0,π]

λmax(W(a, b)). (2.43)

This method allows us to numerically estimate the quantum value of any Bell functional
in the CHSH scenario to arbitrary precision.

We have seen before that for a closed convex set the ability to compute the value of
every functional constitutes a complete description of the set. It might not, however,
be the most convenient description. In fact, it does not seem particularly helpful in
deciding whether a probability point P belongs to Q or not (note that since P might not
be extremal, it does not suffice to look at two-qubit realisations). While researchers are
still looking for an analytic closed-form description of the quantum set, this is unlikely
to exist. There is, however, a certain subproblem that admits a closed-form solution.

Suppose that we only care about the correlators and not the marginals, i.e. we want
to decide whether for a specified combination of 〈A0B0〉, 〈A0B1〉, 〈A1B0〉, 〈A1B1〉 we can
find marginals 〈A0〉, 〈A1〉, 〈B0〉, 〈B1〉 such that the point

P = {〈A0〉, 〈A1〉, 〈B0〉, 〈B1〉, 〈A0B0〉, 〈A0B1〉, 〈A1B0〉, 〈A1B1〉} (2.44)

belongs to the quantum set. Mathematically speaking we are asking about the pro-
jection of Q onto its last 4 coordinates. Recall that a projection of a convex set is a
convex set and in this case let us denote the resulting set by Qcor ⊆ R4. It was shown by
Tsirelson in 1980 that if the answer is positive, we can without loss of generality choose
the marginals to be unbiased, i.e. 〈A0〉 = 〈A1〉 = 〈B0〉 = 〈B1〉 = 0, which implies that the
projection question is in fact equivalent to describing a particular slice of the quantum
set.3 Moreover, Tsirelson proved that for the unbiased marginals this probability point
can be obtained from a quantum realisation based on the maximally entangled state of
two qubits. It turns out this question has a closed-form characterisation. According to
the celebrated Tsirelson–Landau–Masanes criterion the 4 correlators belong to Qcor if
and only if

1 +
∏
xy
〈AxBy〉 +

∏
xy

√
1 − 〈AxBy〉2 −

1
2

∑
xy
〈AxBy〉

2
≥ 0, (2.45)

where the sums and products go over x, y ∈ {0, 1}. If the left-hand side is strictly
positive, the point in question is an interior point of Qcor. Otherwise it lies on the
boundary. Boundary points such that at most 1 correlator is of unit modulus are known
to be extremal.

3It is easy to see that the same is true for the local set.
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2 The CHSH scenario

2.3 Hardy paradox

In the section above we have seen that comparing the local and quantum values of
specific Bell functionals is an elegant approach to demonstrate that the local set is a
strict subset of the quantum set. Let us conclude with an alternative approach, known
as the Hardy paradox, which is based on looking at a particular slice of these high-
dimensional sets.

Let us look at the slice given by the following three conditions:

P(0, 0|0, 0) = 0, (2.46)
P(0, 1|1, 0) = 0, (2.47)
P(1, 0|0, 1) = 0. (2.48)

Suppose now that P ∈ L and hence can be written as a convex combination of the
deterministic points. Since the conditions above force some probabilities to vanish,
they must hold simultaneously for every term present in the convex combination.
A straightforward analysis of the local vertices shows that there are only 5 vertices
satisfying the constraints above and each of them satisfies P(0, 0|1, 1) = 0. Therefore, for
a local point the three conditions above imply that P(0, 0|1, 1) = 0.

This turns out not be true in quantum mechanics, which is precisely the paradox.
Consider the following realisation:

|ψ〉 =

√
1 − a2

2

(
|01〉 + |10〉

)
+ a|11〉,

A0 = B0 = 2a X +
√

1 − 4a2 Z,
A1 = B1 = −Z,

where a :=
√
√

5 − 2. It is easy to verify that the three constraints are satisfied, while

P(0, 0|1, 1) = (5
√

5−11)/2 ≈ 0.09. This is the largest violation of the Hardy paradox and,
perhaps surprisingly, it is achieved by a non-maximally entangled state. The unique
point that allows for this maximal violation is an interesting example from the geometric
point of view: it is an extremal point of the quantum set but it is not exposed.

2.4 Visualising the three correlation sets

To conclude this section let us try to visualise the three correlation sets. Since the
correlation sets are 8-dimensional we cannot simply plot them. The best we can do
is to visualise specific 2-dimensional (or maybe 3-dimensional) slices of the full object,
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2 The CHSH scenario

but it should be clear that one cannot hope to see all the relevant features in a single
figure. Fig. 2.1 shows the most commonly used slice of the correlation sets in which the
quantum set is simply a disc sandwiched in between two squares. Indeed, in this highly-
symmetric slice the quantum set admits a closed-form characterisation. However,
looking at other slices reveals the true complexity of the problem, see Figs. 2.2, 2.3
and 2.4. Indeed, the quantum set of correlations turns out to be as complex as a convex
set can be.

Figure 2.1: The most common visual representation of the three correlation sets. The
local, quantum and no-signalling sets are shown in green, orange and blue,
respectively. (Figure taken from arXiv:1710.05892 reproduced with the au-
thors’ permission.)
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Figure 2.2: A slice of unbiased marginals which demonstrates that the quantum set
contains points which are extremal but not exposed. (Figure taken from
arXiv:1710.05892 reproduced with the authors’ permission.)
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Figure 2.3: A slice showing a non-trivial exposed face of the quantum set which con-
tains both local and nonlocal points. (Figure taken from arXiv:1710.05892
reproduced with the authors’ permission.)
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Figure 2.4: A slice showing the geometry of the quantum set around the Hardy
point, which turns out to be extremal but not exposed. (Figure taken from
arXiv:1710.05892 reproduced with the authors’ permission.)

33

http://arxiv.org/abs/1710.05892


3 Beyond the CHSH scenario

While one could ask for some additional results in the CHSH scenario (e.g. an analytic
description of the quantum set or a parametrisation of the extremal points), it is fair
to say that our understanding there is almost complete. As one might expect things
become significantly more complicated when we move on to Bell scenarios with more
settings and more outcomes.

Let us first point out that the correlation sets corresponding to different number of
settings and outcomes exhibit a nested structure. For instance, given the correlation
sets of k settings and n outcomes we can obtain the correlation sets for k − 1 setting
by disregarding one of the settings. We can also reduce the number of outcomes by
restricting our attention to distributions where certain outcomes do not appear. This
implies that all the features we have observed in the CHSH case must necessarily be
present in all larger Bell scenarios. Similarly, we can take a Bell functional from the
CHSH scenario and interpret it as a functional in some larger Bell scenario and it is
not hard to see that the local, quantum and no-signalling values are preserved.1 Such
procedures are sometimes referred to as liftings. Therefore, whenever analysing larger
Bell scenarios we will necessarily see features already present in smaller scenarios, but
of course we are mainly interested in new findings.

Moreover, when listing all facet Bell inequalities or extremal no-signalling boxes it
is convenient to introduce some equivalence relations. We say that two probability
distributions or Bell functionals are equivalent if they are related by some combination
of the following operations: (a) swapping the roles of Alice and Bob, (b) relabelling the
settings and (c) relabelling the outcomes. It is easy to see that all 8 facet Bell inequalities
in the CHSH scenario belong to the same equivalence class.

So what is known about the correlation sets in larger Bell scenarios? Unfortunately,
not that much. Finding the facet Bell inequalities of L and the extremal no-signalling
boxes of NS is relatively easy in the CHSH scenario, but the difficulty of performing
this task grows unexpectedly fast. In fact, the only other scenario where all the facets
of L have been found corresponds to 3 settings and 2 outcomes and it turns out that
in this scenario there are only two equivalence classes: liftings of the CHSH inequality
and the so-called I3322 functional. However, already in the scenario with 4 settings and 2

1We implicitly assume that all three values are non-negative. Every Bell functional can be shifted to
satisfy this condition.
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3 Beyond the CHSH scenario

outcomes the number of distinct classes is not known (it is known that there are at least
26 classes). Finding all the extremal boxes of the no-signalling set is slightly easier: we
have a compact characterisation of extremal no-signalling boxes for scenarios whenever
either k = 2 or n = 2 (in both cases they turn out to be simple generalisations of the PR
box). Not much is known beyond that.

Given that in larger scenarios we cannot even completely describe the two polytopes, it
might seem that there is no hope to describe the quantum set. Moreover, the only reliable
tool for studying the quantum set presented so far crucially depended on Jordan’s lemma
which is only relevant for the scenario with two settings and two outcomes. It is clear
that in order to make progress we must introduce a completely new approach.

3.1 Describing the quantum set through a hierarchy of
optimisation problems

In Section 1.9 we described a heuristic method which allows us to find a lower bound
on the quantum value of a Bell functional. However, since achieving the quantum value
might require quantum realisations of an arbitrarily large dimension, that method by
itself cannot be considered conclusive (even given access to unlimited computational
power). What we are missing is a way of obtaining upper bounds and the procedure
described below does precisely that.

The approach we will focus on now employs a hierarchy of optimisation problems to
approximate the quantum set of correlations. The variant presented below is usually
referred to as the Navascués–Pironio–Acín (NPA) hierarchy and is based on a simple
observation. Suppose we are given a particular quantum realisation {|ψ〉,Px

a ,Q
y
b } in the

scenario with k measurement settings and n measurement outcomes. Since we only care
about whether some probability point is achievable by quantum systems or not, we may
without loss of generality assume that the state is pure and that the measurements are
projective. We can now generate a set of 2nk vectors by considering

Px
a ⊗ 1 |ψ〉 for all x ∈ [k], a ∈ [n], (3.1)

1 ⊗Qy
b |ψ〉 for all y ∈ [k], b ∈ [n]. (3.2)

Let Γ be the Gram matrix of this set, i.e. a square matrix of size 2nk whose entries
are given by the inner product of vectors, which by definition is positive semidefinite
(every Gram matrix is positive semidefinite). This matrix contains terms of the form
〈ψ |Px

a ⊗ Qy
b |ψ〉, which correspond to probabilities, but also other terms, which cannot

be given physical meaning, e.g. 〈ψ |Px′
a′P

x
a ⊗ 1|ψ〉. Nevertheless, the normalisation and

orthogonality of measurement operators impose certain linear constraints even on these
“unphysical” entries, for instance:∑

a′
〈ψ |Px′

a′P
x
a ⊗ 1|ψ〉 = 〈ψ |Px

a ⊗ 1|ψ〉 (3.3)
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3 Beyond the CHSH scenario

and
〈ψ |Px

a′P
x
a ⊗ 1|ψ〉 = δaa′ 〈ψ |Px

a ⊗ 1|ψ〉. (3.4)

The bottom line here is that if a quantum realisation exists, we can write down a
positive semidefinite matrix Γ satisfying all these constraints. This is convenient because
searching for a positive semidefinite matrix satisfying a set of linear constraints is an
instance of an optimisation problem which can be solved efficiently. Such problems
constitute a generalisation of linear programs discussed in Section 1.6 and are called
semidefinite programs (SDPs).

Now given a probability point P we can ask whether there exists a positive semidefinite
matrix Γ whose physical entries coincide with P and whose unphysical entries satisfy
the required linear constraints. Most importantly, this can be checked efficiently using
a numerical algorithm. If the answer turns out to be negative, we are guaranteed that P
lies outside of the quantum set. If the answer is positive, we still cannot be sure whether
P ∈ Q or not. Let us denote the set of probability points for which a valid Γ matrix can
be found by Q1 and we will say that Q1 represents the first level of the NPA hierarchy.
The observation above implies that Q ⊆ Q1 and it should be easy to see that the set Q1
is compact and convex. Moreover, since no-signalling conditions are included in the
linear constraints we immediately deduce that Q1 ⊆ NS.

In the first level the rows and columns of the Gram matrix were labelled by first-degree
mononomials in {Px

a ⊗1,1⊗Qy
b } and let us denote such a Γ matrix by Γ1. To construct the

second level of the hierarchy let us add rows and columns labelled by second-degree
monomials and let us denote the resulting matrix by Γ2. It should now be clear how
to extend this to an arbitrary level and let us denote the corresponding Gram matrix
by Γn. Moreover, let Qn be the set of probability points for which a valid Γn matrix
can be found. Since a valid Γn matrix contains a valid Γn−1 matrix as a submatrix, we
immediately deduce that for any n ∈Nwe have

Q ⊆ Qn ⊆ Qn−1 ⊆ . . . ⊆ Q1. (3.5)

In other words we are dealing with a non-increasing sequence of compact convex sets
which provide a better and better approximation of the quantum set.

So far we have argued that semidefinite programming allows us to efficiently check
whether a given probability point belongs to a certain level of the NPA hierarchy,
i.e. check the membership in Qn. Using similar methods we can also maximise any Bell
functional over Qn for any n. The result will only be an upper bound on the actual
quantum value, but if a matching lower bound is found (e.g. by looking for explicit
quantum realisations), we have identified the quantum value of this particular Bell
functional.

Having understood the idea behind the NPA hierarchy it is natural to ask whether the
sequence of sets {Qn}n∈N converges to Q. Note that this would imply that the values of
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3 Beyond the CHSH scenario

a fixed Bell functional computed at increasing levels of the hierarchy would necessarily
converge to the quantum value.

The answer turns out to be subtle: the NPA hierarchy indeed converges but to a quantum
set defined in a slightly different manner. So far we have always worked in the tensor-
product paradigm in which we start with a Hilbert space for Alice and a Hilbert space
for Bob, denoted by HA and HB, respectively, and the combined Hilbert space is given
by HA⊗HB. The measurements of Alice are given by operators acting on HA, while the
measurements of Bob are given by operators acting on HB. The action of Alice on the
combined Hilbert space is given by Px

a ⊗ 1, while the action of Bob is given by 1 ⊗ Qy
b .

Such operators necessarily commute:

[Px
a ⊗ 1,1 ⊗Qy

b ] = Px
a ⊗Qy

b − Px
a ⊗Qy

b = 0. (3.6)

This paradigm makes sense if we can think of the systems of Alice and Bob as two
discrete systems, e.g. two photons or atoms, which can be assigned a Hilbert space of
their own. On the other hand, there are situations where the entire system is described
by a single Hilbert space. There, the restriction that Alice and Bob should act on
their own system can be replaced by the requirement that their actions commute. More
specifically, all the measurement operators act on the same Hilbert space, but we require
that every measurement operator of Alice commutes with every measurement operator
of Bob, i.e. [Px

a ,Q
y
b ] = 0 for all x, y ∈ [k] and a, b ∈ [n]. This formulation is known as

the commuting paradigm and let us denote the resulting quantum set by Qc. One can
show that the NPA hierarchy converges to Qc. While it is immediately clear that Q ⊆ Qc
the question of whether the two sets are equal was an important open problem known
as the Tsirelson’s problem. In January 2020 it was proven that Q , Qc by showing
that there exists a Bell functional whose quantum values in the two paradigms are
different. While the proof proceeds through a construction, this construction seems to
be hard to implement. In particular, the authors do not give any estimates on how many
measurement settings and outcomes one needs to observe the difference between the
two sets.

Since for practical purposes the distinction betweenQ andQc does not seem to play any
role, the NPA hierarchy is the main tool used to study the quantum set in larger Bell
scenarios. One aspect of the NPA hierarchy that is poorly understood is its convergence:
at the moment we have no way of quantifying how close Qn is to Q or Qc.

To gain more practical understanding of the NPA hierarchy, let us work through an
example. More specifically, we will use the first level of the NPA hierarchy to compute
the quantum value of the CHSH functional.

Recall that in the CHSH scenario there are two measurement settings and two mea-
surement outcomes. Hence, the rows and columns of the Gram matrix are labelled by
vectors

Px
a ⊗ 1 |ψ〉 and 1 ⊗Qy

b |ψ〉 (3.7)
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for a, b, x, y ∈ {0, 1}, which gives rise to an 8 × 8 matrix. However, we have seen before
that when dealing with two-outcome measurements it is convenient to use observables
instead of measurement operators. Therefore, we will instead consider the Gram matrix
of the following vectors:

|ψ〉,Ax ⊗ 1 |ψ〉,1 ⊗ By |ψ〉, (3.8)

which gives rise to a 5×5 matrix. One can show that the two optimisation problems are
equivalent because the 8 vectors given in Eq. (3.7) and the 5 vectors given in Eq. (3.8)
span the same linear subspace.

An additional advantage of working in the observable-based picture is that the linear
constraints become simpler. In fact, the linear constraints present at the first level of the
NPA hierarchy simply reduce to setting all the diagonal entries to 1. Writing down the
matrix explicitly yields:

Γ =


1 〈A0〉 〈A1〉 〈B0〉 〈B1〉

〈A0〉 1 〈A0A1〉 〈A0B0〉 〈A0B1〉

〈A1〉 〈A1A0〉 1 〈A1B0〉 〈A1B1〉

〈B0〉 〈A0B0〉 〈A1B0〉 1 〈B0B1〉

〈B1〉 〈A0B1〉 〈A1B1〉 〈B1B0〉 1

 .
The green entries are precisely the reduced coordinates introduced before, i.e. these are
the “physical” entries. The red entries, for which we have used the shorthand notation
〈AxAx′〉 := 〈ψ |AxAx′ ⊗ 1|ψ〉 and 〈ByBy′〉 := 〈ψ |1⊗ ByBy′ |ψ〉, are the “unphysical” entries.

Having written down the first level of the hierarchy we can use it to compute an upper
bound on the quantum value of an arbitrary Bell functional. If we choose the CHSH
functional we reach the following optimisation problem:

maximise Γ24 + Γ25 + Γ34 − Γ35 (3.9)
over Γ ≥ 0 (3.10)
satisfying Γ j j = 1 for j ∈ {1, 2, . . . , 5}, (3.11)

where Γ jk is the relevant entry of Γ. This is a semidefinite program which can be solved
using freely available numerical packages. These packages output the value of the
problem and also a particular Γ matrix achieving it. In this case the value equals 2

√
2

and one choice of a Γ matrix achieving it is given by:2

Γ =



1 0 0 0 0
0 1 0 1

√
2

1
√

2
0 0 1 1

√
2

−1
√

2
0 1

√
2

1
√

2
1 0

0 1
√

2
−1
√

2
0 1


. (3.12)

2Note that most packages will only return numerical values, hence, recognising their analytical form
might require some effort.
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It is easy to check that this is a valid solution to the optimisation problem. In fact, the
only condition that is not obvious from inspection is the positivity of Γ. To show that
Γ ≥ 0 we write it as a sum of positive semidefinite rank-1 operators. Indeed, it is easy
to check that

Γ =

3∑
j=1

|e j〉〈e j |

for

|e1〉 :=


1
0
0
0
0

 , |e2〉 :=


0
1
0
1
√

2
1
√

2


, |e3〉 :=


0
0
1
1
√

2
−1
√

2


. (3.13)

Note that vectors |e2〉 and |e3〉 correspond precisely to the terms appearing in the SOS
decomposition given in Eqs. (2.25) and (2.26). Indeed, one can show that solving
the semidefinite program is equivalent to searching for a SOS decomposition for the
corresponding Bell operator.

The solution given in Eq. (3.12) is precisely the Gram matrix arising from the quan-
tum realisation presented in Eqs. (2.28), (2.29) and (2.30). In particular, the resulting
probability point (in the reduced coordinates) is given by:

P =
(
0, 0, 0, 0,

1
√

2
,

1
√

2
,

1
√

2
,
−1
√

2

)
. (3.14)

One can show that this is indeed the unique probability point which achieves the
quantum value of 2

√
2. However, this cannot be deduced from the first level of the

NPA hierarchy. One can find other valid Γ matrices which correspond to probability
points which do not belong to Q. This shows that while the first level of the NPA
hierarchy is sufficient to determine exactly the quantum value of the CHSH functional,
it does not provide a tight characterisation of the quantum set in the CHSH scenario,
i.e. Q , Q1.

3.2 What is needed to generate nonlocal statistics?

Having realised that quantum states can be used to generate nonlocal statistics, it is
natural to ask whether all quantum states are capable of doing so. This question was
posed and answered in a seminal paper of Reinhard Werner in 1991. Werner defined
the notion of separable states and it is clear that his motivation was to write down the
largest class of states which must necessarily generate local statistics. In that sense one
can think of separable states as classical (or non-useful for nonlocality purposes). In
the same paper he defined a family of highly-symmetric states, now known as Werner
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3 Beyond the CHSH scenario

states, and he showed that some of them cannot generate nonlocal correlations despite
being entangled. On the other hand, it is easy to show that all pure entangled states can
generate nonlocal correlations (in fact, they can violate the CHSH inequality).

A particularly curious is the case of PPT entangled states. Consider a state ρAB which is
PPT and suppose measurements {Px

a} and {Qy
b } are performed on it. It is easy to see that

the same statistics can be obtained by performing measurements {Px
a} and {[Qy

b ]T
} on the

state ρTB
AB. In other words, the states ρAB and ρTB

AB are indistinguishable when it comes
to generating nonlocal correlations. This might come as a surprise as there are known
examples where these two states have strikingly different entanglement properties.

Perhaps this is what led Asher Peres to conjecture that PPT states cannot generate
nonlocal correlations. This statement, known as Peres conjecture, attracted significant
attention, but progress was limited. Until recently the only known rigorous result in
this direction was due to Werner and Wolf, who showed that PPT states do not violate
a particular class of Bell inequalities (to which CHSH happens to belong). The problem
was solved in 2014, when Vértesi and Brunner gave an example of a two-qutrit PPT state
which violates some Bell inequality (but only by a little bit). The fact that finding such
an example took the community so long and that the violation is tiny seems to suggest
that this really is an unusual situation, but we do not have any analytic understanding
of this phenomenon. Perhaps the difficulty arose from the fact that we had to go beyond
the simplest, most-studied scenarios, i.e.: two qubits (there are no entangled PPT states
of two qubits) and the CHSH Bell scenario (PPT states do not violate CHSH). One could
defineQPPT as the set of correlations achievable using PPT states and any rigorous result
allowing us to compare QPPT to either L or Qwould be extremely interesting.

Just like entanglement is what is required from the state, incompatibility is a necessary
property of measurements. A pair of measurements acting on H, denoted by {Fa}

nA
a=1

and {Gb}
nB
b=1 is called compatible or jointly measurable if there exists a measurement

{Hab}ab whose outcomes are labelled by pairs of (a, b), where a ∈ [nA] and b ∈ [nB], such
that ∑

b

Hab = Fa for all a ∈ [nA], (3.15)∑
a

Hab = Gb for all b ∈ [nB]. (3.16)

What this means is that the two original measurements can be performed simultane-
ously by performing the last measurement, often referred to as the parent measurement.
This allows us to define a consistent joint probability distribution, which by Fine’s the-
orem implies that the resulting statistics are local.

We have now seen what is obviously necessary to produce nonlocal correlations: the
state must be entangled and both parties must perform incompatible measurements.
Therefore, observing nonlocal correlations can be seen as certificate that the state is
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3 Beyond the CHSH scenario

entangled and that the measurements are incompatible. The next step would be to
make these conclusions stronger, e.g. by deducing how entangled the state is. This is
precisely the idea behind self-testing or device-independent certification of quantum
devices, which we will discuss in the last chapter.
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4 Self-testing of quantum systems and
device-independent cryptography

We have seen that in order to generate nonlocal correlations one must perform incom-
patible measurements on an entangled state. These conditions are necessary but they
are not sufficient. As mentioned above there exist entangled states which are not ca-
pable of generating nonlocal statistics and even for highly entangled state one must
carefully choose the measurements. For instance it is easy to check that performing
A0 = B0 = X and A1 = B1 = Z on the maximally entangled state |Φ+

〉 does not violate
any Bell inequality.

Having realised that nonlocality is a rather special phenomenon which only occurs un-
der particular circumstances, it is natural to ask whether it can be used for certification,
we can ask: “given that I have observed certain statistics, what can I deduce about the
underlying quantum system?”. In most areas of quantum physics we start with a model
and try to predict its properties, e.g. quantities that can be measured in an experiment.
Here we are dealing with an inverse problem: we start with the observed data and we
try to draw conclusions about the physical system.

The term certification is often used in the tomographic setting, e.g. we use trusted
measurement devices to certify a source of quantum states or vice versa. We would call
such an approach device-dependent certification because ultimately we rely on having
at least some devices whose functioning we trust. The direction we are pursuing here
is rather different.

Recall that the only assumption of the Bell scenario is that there are two devices which
are not allowed to communicate. If we observe a Bell violation, we can immediately
conclude that these devices do not admit a local-realistic description. Having ruled
a local-realistic description it seems natural to assume that our devices are quantum.
Since in this approach we only assume that we have two non-communicating quantum
devices but we do not rely on a detailed characterisation, we will refer to this approach
as device-independent certification.
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4 Self-testing of quantum systems and device-independent cryptography

4.1 How to maximally violate the CHSH inequality?

Let us start with the standard example of device-independent certification. Suppose
we are given a pair of unknown quantum systems on which we can perform a Bell
experiment. In the experiment we see that these two devices produce the maximal
violation of the CHSH inequality. What can we say about these devices?

This question boils down to describing all the quantum realisations which achieve the
maximal CHSH violation. Perhaps surprisingly, this question has a simple answer: all
these realisations are “equivalent” to the quantum realisation given in Eqs. (2.28), (2.29)
and (2.30). Let us now go through a proof of this statement which will give us the
precise sense in which these realisations are “equivalent”.

In Section 2.2 we have shown that a SOS decomposition for the CHSH operator W can
be written using the following operators:

L0 := A0 ⊗ 1 − 1 ⊗
B0 + B1
√

2
, (4.1)

L1 := A1 ⊗ 1 − 1 ⊗
B0 − B1
√

2
. (4.2)

Previously we were only interested in deriving the quantum value of the CHSH func-
tional and, hence, we could without loss of generality assume that the measurements
are projective (recall that observables corresponding to projective measurements satisfy
A2

x = 1 and B2
y = 1). Now our goal is to characterise all quantum realisations achiev-

ing the maximal violation, so we would like to drop this assumption. Without the
projectivity assumption the SOS decomposition reads:

W =
1
√

2

(
(A2

0 + A2
1) ⊗ 1 + 1 ⊗ (B2

0 + B2
1)
)
−

1
√

2
(L2

0 + L2
1).

It is now easy to see that 〈W, ρAB〉 = 2
√

2 implies that the following conditions hold:

〈A2
x, ρA〉 = 1 for x ∈ {0, 1}, (4.3)

〈B2
y, ρB〉 = 1 for y ∈ {0, 1}, (4.4)

〈L2
j , ρAB〉 = 0 for j ∈ {0, 1}. (4.5)

The first two conditions tell us that the measurements of Alice and Bob are projective on
the support of the state. This is a inherent feature of device-independent certification:
measurements can only be certified on the support of the state. To simplify the notation
it is convenient to take the reduced states ρA and ρB to be full-rank. Note that this is
not an assumption, we simply truncate the irrelevant (unoccupied) dimensions of the
Hilbert space. Then, Eqs. (4.3) and (4.4) imply that

A2
x = 1 and B2

y = 1. (4.6)
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4 Self-testing of quantum systems and device-independent cryptography

In other words, we have deduced in a device-independent manner that the measure-
ments are projective. Projectivity is a local property of the measurement, while the last
condition allows us to deduce some relations between the operators of Alice and the
operators of Bob. Since

〈L2
j , ρAB〉 =

∥∥∥L jρ
1/2
AB

∥∥∥2
F, (4.7)

where ‖·‖F is the Frobenius norm, we see that Eq. (4.5) implies that L jρ
1/2
AB = 0 and finally

L jρAB = 0. Writing this relation out for j = 0 gives:

(A0 ⊗ 1)ρAB =
1
√

2

[
1 ⊗ (B0 + B1)

]
ρAB. (4.8)

Combining this with Eq. (4.6) implies that

ρAB = (A2
0⊗1)ρAB =

1
√

2

[
A0⊗(B0+B1)

]
ρAB =

1
2

[
1⊗(B0+B1)2

]
ρAB = ρAB+

1
2

[1⊗{B0,B1}]ρAB

(4.9)
and finally

[1 ⊗ {B0,B1}]ρAB = 0. (4.10)

Taking partial trace over Alice’s system gives

{B0,B1}ρB = 0. (4.11)

Finally, since ρB is full-rank, we can right-multiply this equation by the inverse ρ−1
B to

obtain
{B0,B1} = 0. (4.12)

This turns out to be quite a powerful conclusion. One can show that if we are given
Hermitian operators B0 and B1 acting on HB satisfying B2

0 = B2
1 = 1 and {B0,B1} = 0,

then the Hilbert space can be written as HB ≡ C2
⊗HB′ and one can choose a basis such

that

B0 = X ⊗ 1, (4.13)
B1 = Z ⊗ 1. (4.14)

This is a standard result in representation theory, but it can be proven using elementary
methods, e.g. using Jordan’s lemma.

Since the CHSH functional is symmetric with respect to swapping Alice and Bob, the
same conclusions holds for the observables of Alice. More specifically, we deduce that
the Hilbert space of Alice decomposes as HA ≡ C

2
⊗HA′ , but here it is more convenient

to choose a local basis such that

A0 =
X + Z
√

2
⊗ 1, (4.15)

A1 =
X − Z
√

2
⊗ 1. (4.16)
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4 Self-testing of quantum systems and device-independent cryptography

Having reconstructed the local observables we are ready to write down the Bell operator.
A simple calculation shows that:

W = WCHSH ⊗ 1A′ ⊗ 1B′ , (4.17)

where
WCHSH =

√

2(X ⊗ X + Z ⊗ Z) (4.18)

is a two-qubit operator. Finally, we need to determine for which states ρAB the equality
〈W, ρAB〉 = 2

√
2 holds. This reduces to identifying the eigenspace of W which corre-

sponds to the largest eigenvalue of 2
√

2. Since all the corresponding eigenstates are of
the form

|Φ+
〉 ⊗ |ψaux〉A′B′ , (4.19)

we conclude that ρAB must be of the form:

ρAB = Φ+
⊗ σA′B′ . (4.20)

This is quite remarkable as we have managed to give an almost-complete description of
the unknown quantum system based solely on observing the maximal CHSH violation.
In fact, there are only two aspects in which this description is different from the previ-
ously given ideal realisation: (a) we have to allow for auxiliary degrees on freedom on
which the measurements act trivially and (b) we had to choose the local bases appro-
priately (which corresponds to applying local unitaries to the original realisation). It is
easy to see that in the device-independent scenario these two equivalences are always
present and we have to accept them.

The characterisation given in Eqs. (4.13), (4.14), (4.15), (4.16) and (4.20) is often referred
to as a self-testing statement for the CHSH inequality. Intuitively, it means that the
maximal violation of the CHSH inequality can be achieved in an essentially unique
manner.

From the self-testing statement we immediately see that the CHSH inequality is maxi-
mally violated only by the probability point given in Eq. (3.14), which implies that it is
an exposed point of the quantum set.

4.2 Device-independent cryptography

The fact that Alice and Bob can almost-completely characterise unknown quantum
devices (under rather weak assumptions) turns out to have remarkable consequences
for cryptographic applications.

Let us start with the task of randomness generation. Suppose that Alice wants to buy
a random number generator from a potentially untrusted vendor. If she decides to buy
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4 Self-testing of quantum systems and device-independent cryptography

a classical device, she can use it several times and check that the output passes various
statistical tests. However, she can never rule out the scenario in which the device
deterministically outputs a fixed string of bits generated in advance. In particular, this
string could be completely known to the vendor.

This inherent limitation of classical devices can be overcome using quantum systems.
If Alice buys a pair of quantum devices from an untrusted party, she simply needs to
check that these two devices are capable of generating the maximal CHSH violation. To
do so she simply needs to ensure that the devices cannot communicate during the Bell
experiment, which can be done by placing them at distant locations. If this is the case,
she can determine what is happening inside the device. In particular, since the optimal
measurements correspond to Pauli measurements on a maximally entangled state, no
external party can be correlated with the outcomes. This is a simple consequence of the
fact that the only class of tripartite states compatible with Eq. (4.20) is given by:

ρABE = Φ+
⊗ σA′B′E. (4.21)

In other words, the eavesdropper can only be correlated with auxiliary degrees of
freedom which are ignored by the measurements of Alice and Bob. This implies that
whenever Alice observes the maximal violation, she can be guaranteed that her devices
are generating 1 perfect bit of fresh randomness unknown to anyone in the Universe.

The goal of randomness generation is to generate randomness unknown to anyone. In
a slightly more complex task known as quantum key distribution (QKD) Alice and
Bob try to generate a secret key unknown to the eavesdropper Eve. In the standard
(entanglement-based) QKD Alice and Bob have access to trusted qubit measurements
X and Z but the state, which we denote by ρABE, is provided by Eve. The security
argument relies on the fact that if Alice and Bob observe perfect correlations in the X
and Z bases, i.e.

〈X ⊗ X, ρAB〉 = 〈Z ⊗ Z, ρAB〉 = 1, (4.22)

they can conclude that ρAB = Φ+
AB, which immediately implies that Eve must be uncor-

related, i.e. ρABE = Φ+
AB ⊗ ρE.

The standard quantum key distribution has a tomographic flavour: we use trusted
measurement devices to characterise an unknown state. In the device-independent
approach we can drop this assumption. As shown above Alice and Bob can take a
pair of untrusted devices and use them to violate the CHSH inequality. If they observe
the maximal violation, they know that Eve cannot be correlated with their measure-
ment outcomes. Using standard classical postprocessing techniques these correlations
can then be turned into a perfect key shared between Alice and Bob and completely
unknown to Eve.
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